Annual Conference on Human and Language Technology
/
2022.10a
/
pp.526-530
/
2022
자동 쓰기 평가 연구는 쓰기 답안지를 채점하는데 드는 시간과 비용을 절감할 수 있어, 교육 분야에서 큰 관심을 가지고 있다. 본 연구의 목적은 쓰기 답안지의 문서 구조를 효과적으로 학습하여 평가하고, 문장단위의 피드백을 제공하는데 있다. 그 방법으로는 문장 레벨에서 한국어 Sentence-BERT 모델을 활용하여 각 문장을 임베딩하고, LSTM 어텐션 모델을 활용하여 문서 레벨에서 임베딩 문장을 모델링한다. '한국어 쓰기 텍스트-점수 구간 데이터'를 활용하여 해당 모델의 성능 평가를 진행하였으며, 다양한 KoBERT 기반 모델과 비교 평가를 통해 제안하는 모델의 방법론이 효과적임을 입증하였다.
Annual Conference on Human and Language Technology
/
2021.10a
/
pp.444-449
/
2021
자연어처리에서 임베딩이란 사람의 언어를 컴퓨터가 이해할 수 있는 벡터로 변환한 것으로 자연어처리의 필수 요소 중 하나이다. 본 논문에서는 단어 기반 임베딩인 Word2Vec, GloVe, fastText와 문장 기반 임베딩 기법인 BERT와 M-USE, RoBERTa를 사용하여 한국어 문장 임베딩을 만들어 NSMC, KorNLI, KorSTS 세 가지 태스크에 대한 성능을 확인해보았다. 그 결과 태스크에 따라서 적합한 한국어 문장 임베딩 기법이 달라지며, 태스크에 따라서는 BERT의 평균 임베딩보다 GloVe의 평균 임베딩과 같은 단어 기반의 임베딩이 좋은 성능을 보일 수 있음을 확인할 수 있었다.
Annual Conference on Human and Language Technology
/
2019.10a
/
pp.470-474
/
2019
한글 OCR 성능을 높이기 위해 딥러닝 모델을 활용하여 문자인식 부분을 개선하고자 하였다. 본 논문에서는 폰트와 사전데이터를 사용해 딥러닝 모델 학습을 위한 한글 문장 이미지 데이터를 직접 생성해보고 이를 활용해서 한글 문장의 OCR 성능을 높일 다양한 모델 조합들에 대한 실험을 진행했다. 딥러닝 모델은 STR(Scene Text Recognition) 구조를 사용해 변환, 추출, 시퀀스, 예측 모듈 각 24가지 모델 조합을 구성했다. 딥러닝 모델을 활용한 OCR 실험 결과 한글 문장에 적합한 모델조합은 변환 모듈을 사용하고 시퀀스와 예측 모듈에는 BiLSTM과 어텐션을 사용한 모델조합이 다른 모델 조합에 비해 높은 성능을 보였다. 해당 논문에서는 이전 한글 OCR 연구와 비교해 적용 범위를 글자 단위에서 문장 단위로 확장하였고 실제 문서 이미지에서 자주 발견되는 유형의 데이터를 사용해 애플리케이션 적용 가능성을 높이고자 한 부분에 의의가 있다.
Proceedings of the Korea Information Processing Society Conference
/
2023.05a
/
pp.678-680
/
2023
본 논문은 정확하면서도 효율적인 한국어 문장 분류 기법에 대해서 논의한다. 최근 자연어처리 분야에서 사전 학습된 언어 모델(Pre-trained Language Models, PLM)은 미세조정(fine-tuning)을 통해 문장 분류 하위 작업(downstream task)에서 성공적인 결과를 보여주고 있다. 하지만, 이러한 미세조정은 하위 작업이 바뀔 때마다 사전 학습된 언어 모델의 전체 매개변수(model parameters)를 학습해야 한다는 단점을 갖고 있다. 본 논문에서는 이러한 문제를 해결할 수 있도록 도메인 적응기(domain adapter)를 활용한 한국어 문장 분류 프레임워크인 DAKS(Domain Adaptation-based Korean Sentence classification framework)를 제안한다. 해당 프레임워크는 학습되는 매개변수의 규모를 크게 줄임으로써 효율적인 성능을 보였다. 또한 문장 분류를 위한 특징(feature)으로써 한국어 사전학습 모델(KLUE-RoBERTa)의 다양한 은닉 계층 별 은닉 상태(hidden states)를 활용하였을 때 결과를 비교 분석하고 가장 적합한 은닉 계층을 제시한다.
Annual Conference on Human and Language Technology
/
2023.10a
/
pp.600-602
/
2023
사전 학습된 언어 모델은 최근 다양한 도메인 및 응용태스크에 활용되고 있다. 하지만 언어 모델을 활용한 문장 난이도 측정 태스크에 대해서는 연구가 수행된 바 없다. 이에 본 논문에서는 교과서 데이터를 활용해 문장 난이도 데이터 셋을 구축하고, 일반 말뭉치로 훈련된 BERT 모델과 교과서 텍스트를 활용해 적응 학습한 BERT 모델을 문장 난이도 측정 태스크에 대해 미세 조정하여 성능을 비교했다.
The Journal of Korean Association of Computer Education
/
v.13
no.6
/
pp.79-89
/
2010
In this paper, we proposed a method to find out similar sentences from documents to detect plagiarized documents. The proposed model adapts LSA and N-gram techniques to detect every type of Korean plagiarized sentence type. To evaluate the performance of the model, we constructed experimental data using students' essays on the same theme. Students made their essay by intentionally plagiarizing some reference documents. The experimental results showed that our proposed model outperforms the conventional N-gram model, Vector model, LSA model in precision, recall, and F measures.
Annual Conference on Human and Language Technology
/
2014.10a
/
pp.127-132
/
2014
본 논문은 위키피디아로부터 한국어-영어 간 병렬 문장을 추출하기 위해 이질적 언어 자원의 순차적 매칭을 적용한 유사도 계산 방법을 제안한다. 선행 연구에서는 병렬 문장 추출을 위해 언어 자원별로 유사도를 계산하여 선형 결합하였고, 토픽모델을 이용해 추정한 단어의 토픽 분포를 유사도 계산에 추가로 이용함으로써 병렬 문장 추출 성능을 향상시켰다. 하지만, 이는 언어 자원들이 독립적으로 사용되어 각 언어자원이 가지는 오류가 문장 간 유사도 계산에 반영되는 문제와 관련이 적은 단어 간의 분포가 유사도 계산에 반영되는 문제가 있다. 본 논문에서는 이질적인 언어 자원들을 이용해 순차적으로 단어를 매칭함으로써 언어 자원들의 독립적인 사용으로 각 자원의 오류가 유사도에 반영되는 문제를 해결하였고, 관련이 높은 단어의 분포만을 유사도 계산에 이용함으로써 관련이 적은 단어의 분포가 반영되는 문제를 해결하였다. 실험을 통해, 언어 자원들을 이용해 순차적으로 매칭한 유사도 계산 방법은 선행 연구에 비해 F1-score 48.4%에서 51.3%로 향상된 성능을 보였고, 관련이 높은 단어의 분포만을 유사도 계산에 이용한 방법은 약 10%에서 34.1%로 향상된 성능을 얻었다. 마지막으로, 제안한 유사도 방법들을 결합함으로써 선행연구의 51.6%에서 2.7%가 향상된 54.3%의 성능을 얻었다.
Kim, Kwang-Baek;Park, Eui-Kyu;Ra, Dong-Yul;Yoon, Joon-Tae
Annual Conference on Human and Language Technology
/
2002.10e
/
pp.163-168
/
2002
오늘날 자연어 구문 분석 기술은 만족할 만한 수준에 도달하지 못하고 있고 한국어 구문분석 기술 역시 만족할만한 수준과는 거리가 멀다. 특히 문장의 길이가 긴 문장의 경우 구문분석기가 너무 많은 계산 량으로 인해 제대로 동작하지 못하는 경우가 빈번히 발생하고, 비록 구문구조 결과를 내더라도 정확도가 낮은 경우가 많다. 그 이유는 문장의 길이가 길어질수록 중의성이 매우 증가하여 많은 수의 구문분석 결과가 가능하기 때문이다. 이 중에서 정확한 구문구조를 선택하는 문제는 매우 어려워서 기존의 긴 전체 문장에 대한 구문구조를 한번에 계산하려는 시도는 앞으로도 계속 좋은 결과를 기대하기 어렵다. 따라서 우리는 문장의 길이에 상관없이 항상 안정적으로 결과를 내며, 구문분석에 소요되는 시간이 비교적 짧고, 정확도 역시 높은 구문분석기를 개발하고자 한다. 이를 위하여 전체 문장을 여러 개의 구간으로 분할하여 각 구간을 독립적으로 구문 분석한다. 그 다음 각 구간의 결과를 통합하여 전체 문장에 대한 결과를 생성하는 기법을 택하였다.
Kim, Jin-Sung;Kim, Gyeong-Min;Son, Junyoung;Lim, Heuiseok
Annual Conference on Human and Language Technology
/
2021.10a
/
pp.173-177
/
2021
분절을 통한 양질의 입력 자질을 구성하는 것은 언어모델의 문장에 대한 이해도를 높이기 위한 필수적인 단계이다. 분절은 문장의 의미를 이해하는 데 있어 중요한 역할을 하기 때문이다. 따라서, 한국어 문장 분류 태스크를 수행함에 있어 한국어의 특징에 맞는 분절 기법을 선택하는 것은 필수적이다. 명확한 판단 기준 마련을 위해, 우리는 한국어 문장 분류 태스크에서 가장 효과적인 분절 기법이 무엇인지 감성 분석, 자연어 추론, 텍스트 간 의미적 유사성 판단 태스크를 통해 검증한다. 이 때 비교할 분절 기법의 유형 분류 기준은 언어학적 단위에 따라 어절, 형태소, 음절, 자모 네 가지로 설정하며, 분절 기법 외의 다른 실험 환경들은 동일하게 설정하여 분절 기법이 문장 분류 성능에 미치는 영향만을 측정하도록 한다. 실험 결과에 따르면 자모 단위의 분절 기법을 적용한 모델이 평균적으로 가장 높은 성능을 보여주며, 반복 실험 간 편차가 적어 일관적인 성능 결과를 기록함을 확인할 수 있다.
Proceedings of the Korean Society for Cognitive Science Conference
/
2002.05a
/
pp.40-45
/
2002
본 논문에서는 Roget 시소러스의 범주를 재편성하여 문장추상화에 사용할 온톨로지를 구축하였다. Roget 시소러스의 표제정보의 범주 값과 참조정보의 범주 값을 산출한 후 가중 산술 평균을 구했다. 이 수치를 토대로 OfN(Ontology for Narratives)을 구성하였다. 최종적으로 Roget 시소러스와의 비교를 통하여 OfN을 확정하였다. 이렇게 하여 얻어진 OfN을 설화 문장추상화에 적용하여 이 온톨로지가 유의함을 확인하였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.