• Title/Summary/Keyword: 비공 직경

Search Result 2, Processing Time 0.018 seconds

Microscopic Characteristics of the Olfactory Organ in the Gluttonous Goby Chaenogobius gulosus(Pisces, Gobiidae), Compared to Sympatric Intertidal Gobies (별망둑 the gluttonous goby Chaenogobius gulosus 후각기관의 해부, 조직학적 특성 및 동소 망둑어과 출현종들과의 비교연구)

  • Kim, Hyun Tae;Park, Jong Young
    • Korean Journal of Ichthyology
    • /
    • v.33 no.1
    • /
    • pp.1-7
    • /
    • 2021
  • Using stereo, light, and scanning electron microscopes, we researched the anatomical and histological structure of Chaenogobius gulosus's olfactory organ and compared it to those of sympatric gobies Luciogobius guttatus and Favonigobius gymnauchen. Results revealed the following common characteristics: i) tubular anterior nostril (AN) and flat posterior nostril (PN), ii) a single longitudinal lamella, iii) two accessory nasal sacs (ANS, ethmoidal and lacrimal), iv) abundant sensory epithelium lymphatic cells (LC), v) an eosinophil cell, and vi) a ciliary length a quarter of the knob diameter in the olfactory receptor neuron (ORN). Some characteristics are specific to C. gulosus and different from the other two gobies: i) 0.5~1.0 mm AN and 0.2~0.5 mm PN (vs. 0.2~0.3 mm and 0.2~0.3 mm in L. guttatus; 0.2~0.4 mm and 0.1~0.3 mm in F. gymnauchen), ii) two ANS (vs. absence in L. guttatus; two in F. gymnauchen), iii) abundant LC (vs. low in L. guttatus and F. gymnauchen), iv) low density non-sensory cilia on the lamellar surface (vs. high in L. guttatus; low in F. gymnauchen), and v) a quarter ciliary length to knob diameter ratio in the ORN (vs. mixture of a quarter to equal ratio in L. guttatus; two or three times in F. gymnauchen). From these results, we confirmed the C. gulosus olfactory organ has adapted anatomically and histologically to the sand-rock tidal zone.

Dose Characteristics of Stereotactic Radiosurgery in High Energy Linear Accelerator Proton Beam (고에너지 선형가속기에 의한 입체방사선수술의 선량특성)

  • Choi, Tae-Jin;Kim, Ok-Bae
    • Radiation Oncology Journal
    • /
    • v.10 no.2
    • /
    • pp.137-145
    • /
    • 1992
  • Three-dimensional dose calculations based on CT images are fundamental to stereotactic radiosurgery for small intracranial tumor. In our stereotactic radiosurgery program, irradiations have been performed using the 6 MV photon beam of linear accelerator after stereotactic CT investigations of the target center through the beam's-eye view and the coordinates of BRW frame converted to that of radiosurgery. Also we can describe the tumor diameter and the shape in three dimensional configuration. Non-coplanar irradiation technique was developed that it consists of a combination of a moving field with a gantry angle of $140^{\circ}$, and a horizontal couch angle of $200^{\circ}C$ around the isocenter. In this radiosurgery technique, we provide the patient head setup in the base-ring holder and rotate around body axis. The total gantry moving range shows angle of 2520 degrees via two different types of gantry movement in a plane perpendicular to the axis of patient. The 3-D isodose curves overlapped to the tumor contours in screen and analytic dose profiles in calculation area were provided to calculate the thickness of $80\%$ of tumor center dose to $20\%$ of that. Furtheremore we provided the 3-D dose profiles in entire calculation plane. In this experiments, measured isodose curves in phantom irradiation have shown very similiar to that of computer generations.

  • PDF