• Title/Summary/Keyword: 비계량 다차원 척도법

Search Result 2, Processing Time 0.016 seconds

Non-Metric Multidimensional Scaling using Simulated Annealing (담금질을 사용한 비계량 다차원 척도법)

  • Lee, Chang-Yong;Lee, Dong-Ju
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.16 no.6
    • /
    • pp.648-653
    • /
    • 2010
  • The non-metric multidimensional scaling (nMDS) is a method for analyzing the relation among objects by mapping them onto the Euclidean space. The nMDS is useful when it is difficult to use the concept of distance between pairs of objects due to non-metric dissimilarities between objects. The nMDS can be regarded as an optimization problem in which there are many local optima. Since the conventional nMDS algorithm utilizes the steepest descent method, it has a drawback in that the method can hardly find a better solution once it falls into a local optimum. To remedy this problem, in this paper, we applied the simulated annealing to the nMDS and proposed a new optimization algorithm which could search for a global optimum more effectively. We examined the algorithm using benchmarking problems and found that improvement rate of the proposed algorithm against the conventional algorithm ranged from 0.7% to 3.2%. In addition, the statistical hypothesis test also showed that the proposed algorithm outperformed the conventional one.

Development and Testing of a RIVPACS-type Model to Assess the Ecosystem Health in Korean Streams: A Preliminary Study (저서성 대형무척추동물을 이용한 RIVPACS 유형의 하천생태계 건강성 평가법 국내 하천 적용성)

  • Da-Yeong Lee;Dae-Seong Lee;Joong-Hyuk Min;Young-Seuk Park
    • Korean Journal of Ecology and Environment
    • /
    • v.56 no.1
    • /
    • pp.45-56
    • /
    • 2023
  • In stream ecosystem assessment, RIVPACS, which makes a simple but clear evaluation based on macroinvertebrate community, is widely used. In this study, a preliminary study was conducted to develop a RIVPACS-type model suitable for Korean streams nationwide. Reference streams were classified into two types(upstream and downstream), and a prediction model for macroinvertebrates was developed based on each family. A model for upstream was divided into 7 (train): 3 (test), and that for downstream was made using a leave-one-out method. Variables for the models were selected by non-metric multidimensional scaling, and seven variables were chosen, including elevation, slope, annual average temperature, stream width, forest ratio in land use, riffle ratio in hydrological characteristics, and boulder ratio in substrate composition. Stream order classified 3,224 sites as upstream and downstream, and community compositions of sites were predicted. The prediction was conducted for 30 macroinvertebrate families. Expected (E) and observed fauna (O) were compared using an ASPT biotic index, which is computed by dividing the BMWPK score into the number of families in a community. EQR values (i.e. O/E) for ASPT were used to assess stream condition. Lastly, we compared EQR to BMI, an index that is commonly used in the assessment. In the results, the average observed ASPT was 4.82 (±2.04 SD) and the expected one was 6.30 (±0.79 SD), and the expected ASPT was higher than the observed one. In the comparison between EQR and BMI index, EQR generally showed a higher value than the BMI index.