• Title/Summary/Keyword: 비가열부의 거리

Search Result 2, Processing Time 0.017 seconds

Experimental investigation on the heat transfer characteristics of an oscillatory pipe flow (원관 내 왕복유동에 따른 열전달특성의 실험적 연구)

  • Park, Sang-Jin;Lee, Dae-Yeong;No, Seung-Tak
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.20 no.6
    • /
    • pp.1959-1970
    • /
    • 1996
  • Effects of oscillatory flow upon heat transfer characteristics have been studied experimentally for oscillating flow in a circular tube. The experimental apparatus was designed to simulate the heat exchangers of the Stirling or Vuilleumier cycle machines and the test section consists of heater and cooler. Measurements were presented of heat flux, axial wall temperature distribution, and radial temperature profile of the working fluid for several cases of oscillation frequency and swept distance ratio. The influences of two main parameters, frequency and tidal displacement of the oscillation were investigated. Then the heat transfer coefficient at the heater is obtained. The carried by the authors with a assumption of oscillatory laminar slug flow.

A Study of Mixed Convection on a Flat Plate with an Unheated Starting Length (비가열부가 있는 평판에서의 혼합대류에 관한 연구)

  • 김민수;강영규;백병준;박복춘
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.17 no.5
    • /
    • pp.1304-1312
    • /
    • 1993
  • The buoyancy effects on mixed convection heat transfer over a flat plate surface with unheated starting length is reported. The governing equations are solved by a finite difference method using Patankar scheme and the solution was numerically obtained for various mixed convection parametr $Gr_{x}/Re_{x}^3$, and Prandtl number of 0.7 Local heat flux was measured by using Schilieren Interferometer. The local heat transfer results show that the presence of the unheated starting length can significantly accentuate the effects of buoyancy. The degree of accentuation of the buoyancy effects is strongly influenced by the magnitude of $Gr_{x}/Re_{x}^3$. When the parameter is larger than the order of $10^{-3}$, the contribution of natural convection to the heat transfer coefficients increased significantly due to the unheated starting length. In contrast, when $Gr_{x}/Re_{x}^3$ is smaller then about $10^{-5}$ , the buoyancy contribution is essentially unaffected by the unheated starting length. The shape of the velocity profile is also found to be highly responsive to the interaction between the buoyancy and the starting length.