• Title/Summary/Keyword: 블록 정합

Search Result 314, Processing Time 0.024 seconds

A Performance Improvement of Adaptive Hexagonal Search Using Matching Verification Pattern (정합 검증 패턴을 이용한 적응형 육각 탐색의 성능 개선)

  • Kim, Myoung-Ho;Park, Kyoung-Wan;Oh, Young-Geol;Kwak, No-Yoon
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2005.11a
    • /
    • pp.721-724
    • /
    • 2005
  • 본 논문은 육각 탐색에 기반한 고속 블록 정합 알고리즘의 성능 개선에 관한 것으로, 육각 탐색과정에서 추출한 정합점에 대해 정합 검증 패턴을 이용하여 정합도를 검증함으로써 국부 최소 문제를 효과적으로 개선한 고속 움직임 벡터 추정 기법에 관한 것이다. 제안된 방법은 우선, 적응형 육감 탐색에 있어서 차순위 국부 정합점을 이용하여 탐색 패턴을 확장한다. 이후 이렇게 확장된 탐색 패턴에서 추출한 임시 전역 정합점을 대상으로 정합 검증 패턴을 이용하여 정합도의 비교우위를 재차 검증한다. 이 검증 결과에 따라 추가 탐색 과정을 계속적으로 진행할 것인지 또는 현 임시 전역 정합점을 최종 전역 정합점으로 확정할 것인지 여부를 결정하는 과정을 반복적으로 수행함으로써 움직임 보상화질을 개선한 것이다. 제안된 방법에 따르면, 정합 검증 패턴을 적용한 검증 과정에서 추가적인 연산량 증가가 초래되지만 이를 상호타협적으로 보상할 수 있는 화질 측면에서의 성능 개선 효과를 기대 할 수 있다.

  • PDF

A New Intermediate View Reconstruction using Adaptive Disparity Estimation Scheme (적응적 변이추정 기법을 이용한 새로운 중간시점영상합성)

  • 배경훈;김은수
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.27 no.6A
    • /
    • pp.610-617
    • /
    • 2002
  • In this paper, a new intermediate view reconstruction technique by using a disparity estimation method based-on the adaptive matching window size is proposed. In the proposed method, once the feature values are extracted from the input stereo image, then the matching window size for the intermediate view reconstruction is adaptively selected in accordance with the magnitude of this feature values. That is, coarse matching is performed in the region having smaller feature values while accurate matching is carried out in the region having larger feature values by comparing with the predetermined threshold value. Accordingly, this new approach is not only able to reduce the mismatching probability of the disparity vector mostly happened in the accurate disparity estimation with a small matching window size, but is also able to reduce the blocking effect occurred in the disparity estimation with a large matching window size. Some experimental results on the 'Parts' and 'Piano' images show that the proposed method improves the PSNR about 2.32∼4.16dB and reduces the execution time to about 39.34∼65.58% than those of the conventional matching methods.

Face Extraction and Search using Block Split and Region Construction of Image (영상의 블록분할 및 영역구성에 의한 얼굴추출 및 탐색)

  • Go Kyong-Cheol;Rhee Yang-Won
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2004.11a
    • /
    • pp.911-914
    • /
    • 2004
  • 본 논문에서는 주어진 영상으로부터 보다 빠르고 효율적인 의미정보 추출을 위하여 블록분할 및 영역구성에 의한 기본영역 및 확장영역을 제안하며, 각 영역들을 구성하는 블록들의 구성관계에 의한 블록탐색 기법도 제안하고 있다. 기본영역은 영상의 중심을 기반으로 구성되는 중심영역과 이웃영역으로 구성되며, 확장영역은 기본영역들의 결합에 의해 생성된다. 블록탐색은 영역을 구성하는 블록간의 구성관계를 기반으로 블록들이 가질 수 있는 특징들의 유사도와 영역정보에 따라 탐색할 수 있는 방법이다. 얼굴추출은 분할된 블록들로부터 피부색상 존재여부를 판별하여 피부색이 존재하는 블록들로부터 얼굴 후보영역들을 획득한 후, 추출된 후보영역들로부터 얼굴을 구성하는 지역적 특성을 비교평가하여 얼굴을 추출할 수 있다. 또한 추출된 얼굴 영역정보는 연속적인 영상이 주어졌을 때, 해당영역들의 블록들에 대한 정합을 통하여 이동경로와 얼굴영역을 탐색할 수 있다.

  • PDF

Block-Coordinate Gauss-Newton Optimization for Image Registration (영상 정합을 위한 Block-Coordinate Gauss-Newton 최적화)

  • Kim, Dong-Sik
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.44 no.6
    • /
    • pp.1-8
    • /
    • 2007
  • In this paper, research on joint optimization of the image spatial registration and the exposure compensation is conducted. The exposure compensation is performed in a frame work of the intensity compensation based on the polynomial approximation of the relationship between images. This compensation is jointly combined with the registration problem employing the Gauss-Newton nonlinear optimization method. In this paper, to perform for a simple and stable optimization, the block-coordinate method is combined with the Gauss-Newton optimization and extensively compared with the traditional approaches. Furthermore, regression analysis is considered in the compensation part for a better stable performance. By combining the block-coordinate method with the Gauss-Newton optimization, we can obtain a compatible performance reducing the computational complexity and stabilizing the performance. In the numerical result for a particular image, we obtain a satisfactory result for 10 repeats of the iteration, which implies a 50% reduction of the computational complexity. The error is also further reduced by 1.5dB compared to the ordinary method.

A Prediction Search Algorithm by using Temporal and Spatial Motion Information from the Previous Frame (이전 프레임의 시공간 모션 정보에 의한 예측 탐색 알고리즘)

  • Kwak, Sung-Keun;Wee, Young-Cheul;Kimn, Ha-Jine
    • Journal of the Korea Computer Graphics Society
    • /
    • v.9 no.3
    • /
    • pp.23-29
    • /
    • 2003
  • There is the temporal correlation of the video sequence between the motion vector of current block and the motion vector of the previous block. If we can obtain useful and enough information from the motion vector of the same coordinate block of the previous frame, the total number of search points used to find the motion vector of the current block may be reduced significantly. In this paper, we propose the block-matching motion estimation using an adaptive initial search point by the predicted motion information from the same block of the previous frame. And the first search point of the proposed algorithm is moved an initial point on the location of being possibility and the searching process after moving the first search point is processed according to the fast search pattern. Simulation results show that PSNR(Peak-to-Signal Noise Ratio) values are improved UP to the 1.05dB as depend on the image sequences and improved about 0.33~0.37dB on an average. Search times are reduced about 29~97% than the other fast search algorithms. Simulation results also show that the performance of the proposed scheme gives better subjective picture quality than the other fast search algorithms and is closer to that of the FS(Full Search) algorithm.

  • PDF

Reliability Evaluation Method Based on Spatio-Temporal Statistical Characteristics for Motion Compensated Interpolated Frame (움직임 보상 보간 프레임에 대한 시공간적 통계특성에 기초한 블록기반의 신뢰도 평가 방법)

  • Kim, Jin-Soo
    • The Journal of the Korea Contents Association
    • /
    • v.13 no.5
    • /
    • pp.28-36
    • /
    • 2013
  • Motion-compensated frame interpolation (MCFI) techniques in video signal processing have many application areas. Frame rate up-conversion (FRUC) or distributed video coding (DVC) technique needs an effective MCFI algorithm. For these applications, it is necessary to develop an effective post-processing technique to improve visual qualities or to reduce virtual channel noises, resulting in the reduced channel bit rate. This paper proposes a reliability evaluation method based on spatio-temporal characteristics for motion-compensated interpolated blocks. The proposed algorithm investigates the temporal matching characteristics for current frame and then is designed in such a way that it can measure temporal characteristics as well as the spatial ones. Through computer simulations, it is shown that the proposed method outperforms the conventional temporal matching method.

A New Cross and Hexagonal Search Algorithm for Fast Block Matching Motion Estimation (십자와 육각패턴을 이용한 고속 블록 정합 동작 예측 기법)

  • Park, In-Young;Nam, Hyeon-Woo;Wee, Young-Cheul;Kim, Ha-Jine
    • The KIPS Transactions:PartB
    • /
    • v.10B no.7
    • /
    • pp.811-814
    • /
    • 2003
  • In this paper, we propose a fast block-matching motion estimation method using the cross pattern and the hexagonal pattern. For the block-matching motion estimation method, full search finds the best motion estimation, but it requires huge search time because it has to check every search point within the search window. The proposed method makes use of the fact that most of motion vectors lie near the center of block. The proposed method first uses the cross pattern to search near the center of block, and then uses the hexagonal pattern to search larger motion vectors. Experimental results show that our method is better than recently proposed search algorithms in terms of mean-square error performance and required search time.