• Title/Summary/Keyword: 블록 모델링

Search Result 213, Processing Time 0.019 seconds

Evaluation of the Stability of Ipseok-dae Columnar Joints in Mudeungsan National Park Using 3DEC (3DEC을 이용한 무등산국립공원 입석대 주상절리대의 안정성 평가)

  • Noh, Jeongdu;Kang, Seong Sueng
    • The Journal of Engineering Geology
    • /
    • v.32 no.3
    • /
    • pp.351-361
    • /
    • 2022
  • Numerical analysis performed to predict the behavior of Ipseok-dae columnar joints in Mudeungsan National Park to understand their stability and movement. The numerical analysis technique, 3DEC, is based on the discrete element method that can analysis discontinuities. The analysis used data for material properties derived from laboratory tests, which found that average density was 2.68 kN/m3, average normal stiffness was 3.15 GPa/m, average shear stiffness was 1.00 GPa/m, average cohesion was 0.51 MPa, and the average friction angle was 33°. The Ipseok-dae columnar joints were modeled on the basis of the field survey data for 15 joints located between the observation platform and the hiking trail. The numerical analysis assessed the behavior of each columnar joint by interpreting the displacement of the edges of its upper and lower surfaces. The greatest maximum displacement was found in columnar joint No. 6, and the greatest minimum displacement was found in joint No. 11. Analyzing the movements of five discontinuities in joint No. 11 indicated that the maximum displacement occurred at the 2nd level. The other levels were ordered 5th, 4th, 1st, and 3rd in terms of subsequent greatest displacements. Considering the total displacement in the 15 studied joints, the Ipseok-dae columnar joints are judged to be stable. However, considering the cultural and historical value of Mudeungsan National Park, it is regarded that the currents slope stability should be maintained by monitoring the individual rock blocks of the joints.

A Study on the Development of Mathematical-Informatics Linkage·Convergence Class Materials according to the Theme-Based Design Model (주제기반 설계 모형에 따른 수학-정보 연계·융합 수업 자료 개발 연구)

  • Lee, Dong Gun;Kim, Han Su
    • Communications of Mathematical Education
    • /
    • v.37 no.3
    • /
    • pp.517-544
    • /
    • 2023
  • This study presents the process and outcomes of developing mathematical-informatics linkage·convergence class materials, based on previous research findings that indicate a lack of such materials in high schools despite the increasing need for development of interdisciplinary linkage·convergence class materials In particular, this research provides insights into the discussions of six teachers who participated in the same professional learning community program, aiming to create materials that are suitable for linkage·convergence class materials and highly practical for classroom implementation. Following the material development process, a theme-based design model was applied to create the materials. In alignment with prior research and consensus among teacher learning community members, mathematics and informatics teachers developed instructional materials that can be utilized together during a 100-minute block lesson. The developed materials utilize societal issue contexts to establish links between the two subjects, enabling students to engage in problem-solving through mathematical modeling and coding. To increase the validity and practicality of the developed resources during their field application, CVR verification was conducted involving field teachers. Incorporating the results of the CVR verification, the finalized instructional materials were presented in the form of a teaching guide. Furthermore, we aimed to provide insights into the trial-and-error experiences and deliberations of the developers throughout the material development process, with the intention of offering valuable information that can serve as a foundation for conducting related research by field researchers. These research findings hold value as empirical evidence that can explore the applicability of teaching material development models in fields. The accumulation of such materials is expected to facilitate a cyclical relationship between theoretical teaching models and practical classroom applications.

A study on the carbon trading and maritime finance ecosystem for the maritime industry in the era of sustainability transition (지속가능전환 시기를 맞은 해양산업의 탄소거래 및 해양금융 생태계 구축 연구)

  • Ahn, Soon-Goo;Yun, Hee-Sung
    • Journal of Korea Port Economic Association
    • /
    • v.39 no.4
    • /
    • pp.107-125
    • /
    • 2023
  • The pace of sustainability transition within the maritime industry has been accelerating. This shift primarily necessitates changes in the industry's heavy reliance on fossil fuel-driven ecosystems. Additionally, numerous sustainability laws and regulations, such as the EU's CBAM and IMO's EEXI, have been implemented. This transition is poised to amplify the competitive edge of firms equipped with greater resources, as it introduces substantial operational burdens due to expensive eco-friendly fuel adoption and regulatory compliance. To diverge from the traditional competitive landscape, this paper aims to explore innovative maritime finance models enabling domestic firms to gain competitive advantages on a global scale. Employing analogical reasoning and modeling as a research method, this paper demonstrates that maritime firms can leverage the sustainability transition by aligning sustainable maritime operations with ETS (Emission Trading Schemes). Expanding on this novel approach, the paper delves into potential connections between CCM (Compliance Carbon Market), VCM (Voluntary Carbon Market), and digital asset exchanges. This newly proposed digital/net-zero maritime ecosystem holds the potential to significantly impact the shipping, shipbuilding, and ship finance industries, positioning Busan as a sustainable maritime finance hub. This study holds significance as pioneering research that may stimulate subsequent case-based studies and offer strategic guidance to market participants and policymakers as the maritime industry moves towards a net-zero transition