• Title/Summary/Keyword: 블레이드 진동

Search Result 235, Processing Time 0.031 seconds

Structural Design and Analysis upon Active Rotor Blade with Trailing-edge Flap (뒷전 플랩을 장착한 지능형 로터 블레이드의 구조 설계 및 해석)

  • Eun, Won-Jong;Natarajan, Balakumaran;Lee, Jae-Hwan;Shin, Sang-Joon
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.40 no.6
    • /
    • pp.499-505
    • /
    • 2012
  • Vibratory loads imposed by the rotating blade upon the fuselage has been one of major obstacles in rotorcrafts. A new concept of rotor blade is currently developed to adopt an Active Trailing-edge Flap (ATF) to alleviate such obstacles. The flap is mounted at 65~85% spanwise location from the rotor hub. The nominal rotational speed of the blade is as high as 1,528 RPM, to match the required tip Mach number. Structural integrity is one of the important design aspects to be maintained and monitored in this special type of rotor. This is due to that many detailed components, which drive the flap, are inserted inside the rotating blade. To conduct its structural design and analysis, CAMRAD-II and the one-dimensional beam analysis are used. At the same time, three-dimensional finite element analysis are also used, such as MSC. PATRAN/NASTRAN, in order to analyze the details of the present active blade. As a result, comparable characteristics for the present rotor are predicted by both approaches.

A Study on The Measurement of Vibration Characteristics by Iteration of The Rotor Blade and The Front Vortex (로터 블레이드와 전방와류의 상호작용에 의한 진동특성 측정에 관한 연구)

  • Lee, Myoung-Ok;Choi, Jong-Soo;Rhee, Wook
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.05a
    • /
    • pp.170-175
    • /
    • 2005
  • The focus of this paper is to observe the aerodynamic and vibration characteristics of the NACA0012 blade(AR=16.6) fixed on the lower surface of the wind tunnel, by changing air speed and the blade's angle of attack. After fixing a slit-typed vortex generator on the front of the blade, it could be observed that the vibrational characteristics caused by interactions between vortex and blade through the 5-hole pilot tubes. And, also, two different blades in stiffness had been prepared for observing those characteristics above in this experiment. The results were compared with the given stiffness of blade, as well. According to the results, it is clear to recognize that the vibration spectrum increases while air speed and angle of attack increase, and, also, less stiffness means bigger vibration spectrum.

  • PDF

Modal Analysis of a Rotating Multi-Packet Pre-twisted Blade System (초기 비틀림각을 갖는 회전하는 다중 패킷 블레이드 시스템의 고유 진동 해석)

  • Kim, Min-Kwon;Yoo, Hong-Hee
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2008.04a
    • /
    • pp.393-399
    • /
    • 2008
  • A modeling method for the modal analysis of a pre-twisted multi-packet blade system undergoing rotational motion is presented in this paper. Blades are idealized as pre-twisted cantilever beams that are fixed to a rotating disc. The stiffness coupling effects between blades due to the flexibilities of the disc and the shroud are modeled with discrete springs. The coupling effect between chordwise and flapwise bending deflection is also considered. Hybrid deformation variables are employed to derive the equations of motion. To obtain more general information, the equations of motion are transformed into dimensionless forms in which dimensionless parameters are identified. The effects of the dimensionless parameters and the number of packets as well as blades on the modal characteristics of the rotating multi-packet pre-twisted blade system are investigated with some numerical examples.

  • PDF

Bending Vibration Analysis of Rotating Multi-blade Systems Considering the Coupling Stiffness Effect (연성강성 효과를 고려한 회전하는 다중 블레이드 시스템의 굽힘진동 해석)

  • Lim, Ha-Seong;Kwon, Sung-Hun;Yoo, Hong-Hee
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.16 no.9 s.114
    • /
    • pp.912-918
    • /
    • 2006
  • A modeling method for the vibration analysis of rotating multi-blade systems considering the coupling stiffness effect is presented in this paper. Blades are assumed as cantilever beams and the coupling stiffness effect originates from disc or shroud between blades. As the angular speed, hub radius ratio, and the coupling stiffness vary, the natural frequencies of the system vary. Numerical results show that the coupling stiffness is very important to estimate the natural frequencies. Along with the natural frequencies, associated mode shapes, critical angular speed, and critical hub radius ratio are obtained through the analysis.

Bending Vibration Analysis of Rotating Multi-blade Systems Considering the Coupling Stiffness Effect (연성강성 효과를 고려한 회전하는 다중 블레이드 시스템의 굽힘진동 해석)

  • Lim, Ha-Seong;Kwon, Sung-Hun;Yoo, Hong-Hee
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.1354-1359
    • /
    • 2006
  • A modeling method for the vibration analysis of rotating multi-blade systems considering the coupling stiffness effect is presented in this paper. Blades are assumed as cantilever beams and the coupling stiffness effect originates from disc or shroud between blades. As the angular speed, hub radius ratio, and the coupling stiffness vary, the natural frequencies of the system vary. Numerical results show that the coupling stiffness is very important to estimate the natural frequencies. Along with the natural frequencies, associated mode shapes, critical angular speed, and critical hub radius ratio are obtained through the analysis.

  • PDF

Modal Analysis of a Rotating Packet Blade System having a Crack (한 개의 크랙을 가진 회전하는 패킷 블레이드 시스템의 진동해석)

  • Kwon, Seung-Min;Yoo, Hong-Hee
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.19 no.12
    • /
    • pp.1244-1251
    • /
    • 2009
  • In this paper the vibrational behavior of a multi-packet blade system having a cracked blade is investigated. Each blade is assumed as a slender cantilever beam. The coupling stiffness effect that originates from either disc flexibility or shroud is considered in the modeling. Hybrid deformation variables are employed to derive the equations of motion. The flexibility due to crack, which is assumed to be open during the vibration, is calculated basing on a fracture mechanics theory. In the paper, the results of the change in modal parameters due to crack appearance are presented. The influence of the crack parameters, especially of the changing location of the crack is examined.

Rotor Hub Vibration Reduction Analysis Applying Individual Blade Control (개별 블레이드 조종을 통한 로터 허브 진동 저감 해석)

  • Kim, Taejoo;Wie, Seong-Yong;Kim, Minwoo;Lee, Dong-geon
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.49 no.8
    • /
    • pp.649-660
    • /
    • 2021
  • Through analytical method based on S-76 model, the level of rotor hub vibration reduction was analyzed according to higher harmonic actuating by individual blade control. The higher harmonic actuating method for individual blades was divided into a method of generating an additional actuating force from the pitch-link in the rotating part and generating actuating force through the active trailing edge flap control of the blade. In the 100kts forward flight conditions, the hub load analysis was performed by changing the phase angle of 15 degree for the 2P/3P/4P/5P harmonic actuation for individual blades. Through the harmonic actuation results, the sensitivity of the rotor system according to the actuating conditions was analyzed, and the T-matrix representing the characteristics of the rotor system was derived based on this analysis result. And through this T-matrix, optimal higher harmonic actuating condition was derived to minimize hub vibration level for flight condition. In addition, the effect on the performance of the rotor system and the pitch-link load under minimum hub vibration condition, as well as the noise influence through the noise analysis were confirmed.

Fatigue Damage Analysis of a Low-Pressure Turbine Blade (저압터빈 블레이드의 피로손상 해석)

  • Youn, Hee Chul;Woo, Chang Ki;Hwang, Jai Kon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.39 no.7
    • /
    • pp.713-720
    • /
    • 2015
  • The sizes of the final blades of a low-pressure (LP) steam turbine have been getting larger for the development of high-capacity power plants. They are also larger than the other blades in the same system. As a result, fatigue damage is caused by a large centrifugal force and a low natural frequency of the blade. Recently, many failure cases have been reported due to repeated turbine startups and their prolonged use. In this study, the causes and mechanism of failure of a LP turbine blade were analyzed by using a finite element method to calculate the centrifugal force, the natural frequency of a stress-stiffening effect, and the harmonic response. It was observed that the expected fatigue damage position matched the real crack position at the airfoil's leading edge, and an equivalence fatigue limit approached a notch fatigue limit.