• Title/Summary/Keyword: 블랭크홀더력

Search Result 5, Processing Time 0.019 seconds

A Study on the Blankholding Force in Deep Drawing Process (디프 드로잉 가공시 블랭크 홀더력에 관한 연구)

  • 이종국;강명순
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.13 no.5
    • /
    • pp.886-900
    • /
    • 1989
  • The purpose of this paper is to obtain the effect of blankholding force in deep drawing process. Flange deformation is analysed by theoretical approach in order to apply the optimum blankholding force to the blank. As the result, the upper and lower blankholding force is determined in terms of variables in deep drawing process. Experiment are carried out with the high stiffness spring-type blankholder system. Theoretical upper blankholding force are relatively good agreement with experimental result and the range of initial blankholding forces for various materials tested are found by experiment.

A STUDY ON THE ESTINMATION OF BLANK HOLDER FORCE IN SQUARE CUP DRAWING (정사각용기의 성형시 블랭크 홀더력에 관한 연구)

  • 김진무
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1999.03b
    • /
    • pp.34-39
    • /
    • 1999
  • IN this study when drawing a square cup blank holder pressure necessary for flange wrinkling prevention was experimentally studied. The materials used in the experiment were SPCC and SUS304 and drawing ratio was 1.62∼2.0 Two case for lubrication condition were experimented. One was without lubricant and the other was with lubrication of high viscosity.

  • PDF

A Study on the Estimation of Blank Holder Force in Square Cup Drawing (정사각용기의 성형시 블랭크 홀더력에 관한 연구)

  • 김진무;송영배
    • Transactions of Materials Processing
    • /
    • v.9 no.4
    • /
    • pp.356-361
    • /
    • 2000
  • In this study, when a square cup is under drawing, blank holder pressure necessary for flange wrinkling prevention was experimentally studied. The materials used in the experiment were SPCC steel and SUS304 and the drawing ratio was 1.62∼2.0. Two cases for lubricantion condition were investigated. One was without lubricant and the other was with lubricant of high viscosity.

  • PDF

Analysis of Deformation Characteristics for Deep Drawing of Laser-welded Dlank (레이저 용접 소재의 디프 드로잉 성형특성 해석)

  • Kim, Yeong-Seok;Ha, Dong-Ho;Jeong, Gi-Jo;Seo, Man-Seok
    • Transactions of Materials Processing
    • /
    • v.7 no.6
    • /
    • pp.519-529
    • /
    • 1998
  • In automotive industries the stamping of laser-welded blank gives many merits which bring about dimensional accuracy, strong body assembly and high productivity. However the welding of blanks with different thickness or/and different strength materials introduces many challenging formability problems for process development and tool design. in this paper the deformation characteristics for deep drawing process of laser-welded blank with different thickness sheets are investigated by experiment as well as by FEM simulation. The blank holding force ratio to avoid the movement of weld line was suggested and compared with the experimental result for cylindrical and rectangular cup drawing process. The optimal location of weld line in laser-welded blank with different thickness sheets is calculated to compensate for the movement of weld line on deep drawing process. In addition the effect of location of weld line on formability is clarified using FEM simulation.

  • PDF

A Study on the Behavior of Wrinkles in Cup Drawing with Al alloy by FEM (유한요소법에 의한 합금의 용기 성형시 Al 주름의 거동에 관한 연구)

  • Ko D.L.;Jeon C.Y.;Kim J.M.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.1240-1243
    • /
    • 2005
  • The wrinkling in the flange and wall of a part is a predominant failure mode in stamping of sheet metal parts. In many cases this wrinkling may be eliminated by appropriate control of the blank holding force(BHF), but BHF affects the draw depth. Gotoh had studied the wrinkles under $20{\mu}$ in height. In general, the height of wrinkles could be limited under $200{\mu}$ practically. Therefore small BHF can be allowed so that the depth of drawing could be increased. This paper represents the variation of the wrinkles of flange in the part of cup drawing by using aluminium alloy A1050 and A5052. This simulation is used by the explicit finite elements code $PAM-STAMP^{TM}$. The computed results are compared with the experimental results to show the validity of the analysis.

  • PDF