• Title/Summary/Keyword: 블랭크설계

Search Result 76, Processing Time 0.023 seconds

Optimization of Initial Blank Shape of Multi-stage Deep Drawing for Improvement of Formability (타원형 다단 딥 드로잉 제품의 성형성 향상을 위한 초기 소재 형상 최적 설계)

  • Lee, Sa-Rang;Park, Sang-Min;Hong, Seokmoo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.10
    • /
    • pp.696-701
    • /
    • 2016
  • Multi-stage deep drawing is a widely used industrial manufacturing process, and its applications are gradually expanding to both small products and large metallic products. The USB C-type socket used in smart phones, for example, is manufactured using oval multi-stage deep drawing. The socket is very small and slender and it requires precise manufacturing. The thickness distribution of the final product is guaranteed only if it is uniform throughout the overall process. Therefore, minimizing the height difference between long and short sidewalls after the first operation is important for this goal. An initial blank optimization was performed for an oval-type drawing process based on finite element simulations. The goal was to determine an initial blank geometry that can maintain uniform height and thickness after the first draw operation. The initial blank shape of the sheet metal was optimized, and the results show that it satisfied the conditions of minimal thickness reduction and even thickness distribution. The geometry from the optimized simulation was compared with experimental results, which showed good agreement.

Process Design of Trimming to Improve the Sheared-Edge of the Vehicle Door Latch based on the FE Simulation and the Taguchi Method (유한요소해석 및 다구찌법을 이용한 자동차 도어 래치의 전단면 품질 향상을 위한 트리밍 공정 설계)

  • Lee, Jung-Hyun;Lee, Kyung-Hun;Lee, Seon-Bong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.11
    • /
    • pp.483-490
    • /
    • 2016
  • Automobile door latch is a fine design and assembly techniques are required in order to produce them in a small component assembly shape such as a spring, injection products, a small-sized motor. The door latch is fixed to not open the door of the car plays an important role it has a direct impact on the driver's safety. In this study, during trimming of the terminals of the connector main components of the car door latch, reduce rollover and conducted a research to find a suitable effective shear surface. Using the Taguchi method with orthogonal array of Finite Element Analysis and optimal Design of Experiments were set up parameters for the shear surface quality of the car door latch connector terminals. The design parameters used in the analysis is the clearance, the radius, and the blank holding force, the material of the connector terminal is a C2600. Trimming process optimum conditions suggested by the analysis has been verified by experiments, the shear surface shape and dimensions of a final product in good agreement with forming analysis results.Taguchi method from the above results in the optimization for the final rollover and effective shear surface improved for a vehicle door latch to the connector terminal can be seen that the applicable and useful for a variety of metal forming processes other than the trimming process is determined to be applicable.

Optimal Design of the Tractrix Die Used in the DDI Process for Manufacturing CG Pressure Vessels (CNG 압력용기 제작을 위한 D.D.I. 공정의 Tractrix 다이 최적설계)

  • Lee, Kwang O;Sim, Hyeon Dae;Kwak, Hyo seo;Kim, Chul
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.40 no.10
    • /
    • pp.879-886
    • /
    • 2016
  • Tractrix dies, used in the deep drawing process, can be used to form CNG pressure vessels without a blank holder. Previous studies had only applied tractrix profiles to perform the first deep drawing process of DDI; but an optimal design of the tractrix die that focuses on improving die life and reducing production cost has not been performed yet. In this study, finite element analyses of deep drawing processes were conducted according to heights of the tractrix die by using translating asymptotes. In addition, researchers analyzed von-Mises stresses at the part of stress concentration of the die according to the forming punch loads in order to propose an optimal tractrix die design.

An Automated Nesting and Process Planning System of Irregularly Shaped-Sheet Metal Product With Bending and Piercing Operation for Progressive Working (굽힘 및 피어싱 공정을 갖는 불규칙형상 제품의 프로그레시브 가공을 위한 네스팅 및 공정설계 자동화 시스템)

  • Choi, Jae-Chan;Kim, Byung-Min;Kim, Chul
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.15 no.6
    • /
    • pp.22-32
    • /
    • 1998
  • This paper describes a research work of developing a computer-aided design of irregularly shaped-sheet metal product with bending and piercing operation for progressive working. An approach to the CAD system is based on the knowledge-based rules. Knowledge for the CAD system is formulated from plasticity theories, experimental results and the empirical knowledge of field experts. The system has been written in AutoLISP on the AutoCAD with a personal computer and is composed of five main modules, which are input and shape treatment, flat pattern-layout, production feasibility check, blank-layout, and strip-layout module. Based on knowledge-based rules, the system is designed by considering several factors, such as radius and angle of bend, material and thickness of product, complexities of blank geometry and punch profile, and availability of press. This system is capable of unfolding a formed sheet metal part to give flat pattern and automatically account for the adjustment of bend allowances to match tooling requirements by checking dimensions and the best utilization ratio of blank-layout within bending production feasibility area which is beyond ${\pm}30^{\circ}$ degrees intersecting angle between grain flow and bending edge line and which is suitable to progressive bending operation. Also the strip-layout drawing generated by a bending and a piercing operation according to punch profiles divided into automatically for external area of irregularly shaped-sheet metal product is displayed in graphic forms.

  • PDF

Methods for Suppressing Tearing of PET Coating During Forming of VCM Steel Sheet for Fabricating Washer (세탁기용 VCM 강판 성형시 PET 코팅층 찢김 저감방법)

  • Son, Young-Ki;Lee, Chan-Joo;Byeon, Sang-Doek;Kim, Myong-Dok;Kim, Byung-Min
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.35 no.9
    • /
    • pp.1027-1033
    • /
    • 2011
  • A VCM sheet is a metal sheet on which PET/PVC is coated for outer panels of home appliances. The purpose of this study is to obtain methods for suppressing PET tearing that occurs during the press forming of the VCM sheet. In order to identity the factors that minimize PET tearing, an FE analysis was performed. The occurrence of PET tearing cannot be predicted using the conventional forming limit diagram. PET is torn by friction between a die and sheet, which is caused by the thickening of material at a die corner. To reduce the thickening of material, the blank shape was re-designed and the thickened material at a flange was removed by a trimming process. The results of the FE-analysis involving modified process parameters showed that the thickness of the product at a die corner is distributed within the clearance of drawing and flangeforming process. A forming experiment was conducted to verify the proposed process parameters. A good final product was obtained without PET tearing of the VCM sheet.

Simulation and Experimental Investigation of Reverse Drawing Process for Manufacture of High-Capacity Aluminum Liner (대용량 알루미늄 라이너의 성형을 위한 역 드로잉 공정 해석 및 실험)

  • Lee, Seungyun;Cho, Sungmin;Lee, Sunkyu;Lyu, Geunjun;Kim, Soyoung;Kang, Sunghun
    • Journal of the Korean Institute of Gas
    • /
    • v.20 no.4
    • /
    • pp.78-84
    • /
    • 2016
  • In this work, finite element investigations were carried out to optimize reverse drawing process design for manufacture of high-capacity aluminum liner used in fuel cell vehicle. The tensile tests with aluminum alloy Al6061 annealed at $350^{\circ}C$ were carried out to obtain the flow stresses. In order to estimate more accurate flow stresses after necking, the flow stresses were estimated from the comparison of load vs. displacement curves which were obtained from experimental and simulation results of tensile tests. In case of finite element analyses of reverse drawing processes, it was focused on the effects of process designs such as punch and die designs, blank holding force, drawing ratio and the clearance between the punch and blank holder on the generation of wrinkle and fracture of the blank and partially heated punch. However, it was revealed that experimental results still show the fracture at the end of 2nd drawn cup, although partially heated punch is used. Nevertheless, the drawn cup can be used because the sufficient length of the drawn cup for the next flow forming process and spinning process was obtained.