• Title/Summary/Keyword: 블랙 박스

Search Result 356, Processing Time 0.025 seconds

Detection of Object Area by Modeling of Motion Field in Automobile Driving Environment (자동차 주행 환경에서 모델링된 움직임 필드를 이용한 객체 영역검출)

  • Lee, Dong Hee;Yi, Kang;Kang, Dong Wook;Jung, Kyeong Hoon
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2018.06a
    • /
    • pp.5-7
    • /
    • 2018
  • 지능형 자동차는 역사가 깊은 연구 분야이다. 과거에는 낮은 하드웨어 성능에 맞추기 위하여 복잡한 알고리즘을 경량화하면서 성능을 유지하고자 하는 제한적인 연구들이 주로 이루어졌으나, 최근 하드웨어 성능이 높아지면서는 다양한 알고리즘 적용이 가능해졌기 때문에 매우 활발하게 연구되는 분야가 되었다. 본 논문은 차량의 주행 특성을 반영한 움직임 벡터 필드 모델링을 수행하고, 이 모델 값과 실제 추정된 움직임 벡터와의 차이를 이용해서 차량의 후보 영역을 검출하는 객체 영역 검출 알고리즘을 제안한다. 제안하는 움직임 벡터 필드 모델링 기법은 기존의 움직임 벡터 추정 기법에 비해 계산량이 적고, 음영 영역이나 밝기가 포화된 영역에서도 움직임 필드를 모델링해낼 수 있는 장점이 있어서 상용화된 블랙박스에 적용이 가능하다.

  • PDF

Implementation of a Dashcam System using a Rotating Camera (회전 카메라를 이용한 블랙박스 시스템 구현)

  • Kim, Kiwan;Koo, Sung-Woo;Kim, Doo Yong
    • Journal of the Semiconductor & Display Technology
    • /
    • v.19 no.4
    • /
    • pp.34-38
    • /
    • 2020
  • In this paper, we implement a Dashcam system capable of shooting 360 degrees using a Raspberry Pi, shock sensors, distance sensors, and rotating camera with a servo motor. If there is an object approaching the vehicle by the distance sensor, the camera rotates to take a video. In the event of an external shock, videos and images are stored in the server to analyze the cause of the vehicle's accident and prevent the user from forging or tampering with videos or images. We also implement functions that transmit the message with the location and the intensity of the impact when the accident occurs and send the vehicle information to an insurance authority with by linking the system with a smart device. It is advantage that the authority analyzes the transmitted message and provides the accident handling information giving the user's safety and convenience.

A Study on Evaluation Item Creation using Model-Based Testing (모델 기반 평가 방법을 이용한 평가 항목 생성에 관한 연구)

  • Son, Insick;Cho, Jeonghun;Han, Kabsu;Paek, Yunheung;Lee, Jinyong
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2013.11a
    • /
    • pp.952-954
    • /
    • 2013
  • 모델 기반 평가 방법은 블랙박스 테스트의 한 종류로 평가 항목의 생성과 평가 항목의 실행이 모델 기반 평가 도구를 통하여 자동으로 이루어지는 평가 방법이다. 자동차 지능형 헤드램프의 AFLS/ADB를 대상으로 무작위 평가 생성 기법과 T-method 평가 생성 기법을 이용 하여 평가 항목을 생성하고 비교해 보았으며 Vector CANoe를 사용하여 시뮬레이션을 구성하고 CAPL을 이용하여 스크립트를 작성하고 평가하여 나온 평가 보고서를 확인 하였다.

Implementation of Android Vehicle Management System Using Wi-Fi & Vehicle Network (차량네트워크와 Wi-Fi통신을 이용한 안드로이드 차량관리 시스템 구현)

  • Jung, Jae-Hun;Kim, Jung;Choi, Jin-Ku
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2013.05a
    • /
    • pp.735-738
    • /
    • 2013
  • CAN(Controller Area Network)은 차량내부의 제어하기 위하여 디바이스, 센서, 액츄에이터 등을 연결하는 비동기 직렬버스 네트워크이다. 이 CAN은 ECU들 사이에 통신을 위해 효율적으로 사용되고 있다. 또한 CAN은 엔진 진단, ABS, 에어백 등과 같은 메시지를 전송하며 창문 조작, 전조등 등의 제어 명령들을 전송한다. 본 논문에서는 차량 네트워크 환경으로부터 차량상태를 WiFi 통신을 이용하여 운전자에게 스마트폰으로 제공하는 시스템을 구현하였다. 또한 차량의 연비관리, 차량 관리하는 차계부, 블랙박스 기능이 포함된 안드로이드 애플리케이션을 구현하였다.

A Study on Detecting Autonomous Vehicle Accident Area based on DRQN (DRQN 기반 자율주행 차량 사고영역 탐지 연구)

  • Zhang, Yihang;Sung, Yunsick
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2022.05a
    • /
    • pp.430-431
    • /
    • 2022
  • 자율주행 차량의 성능을 검증하기 위해서는 다양한 검증용 시나리오가 필요하기 때문에 최근에는 검증용 시나리오를 자동으로 생성하기 위한 연구들이 수행되고 있다. 실세계에서 발생되는 다양한 현상을 반영한 시나리오를 생성하기 위해서는 자율주행 차량의 주변 상황에 대한 측정이 필요하지만, 공간적인 문제로 한계가 발생한다. 이와 같은 데이터 수집의 어려움을 자율주행 차량에 탑재된 블랙박스의 영상을 통해서 생성하는 것이 가능하다. 본 논문에서는 DRQN을 이용하여 자율주행 차량 사고영역을 자동으로 탐지하는 방법을 제안한다. 동영상에서 추출된 프레임을 분석해서 교통사고 원도우의 초기 위치를 설정한다. DRQN 학습 프레임워크로 차량의 특징을 도출한다. 마지막으로 특징을 기반으로 교통사고 원도우의 크기와 위치를 조정해서 교통사고 영역을 정확하게 찾는다.

Text-based Feature Extraction and Classification Method of Traffic Accidents (텍스트 기반 교통사고 특징 추출 및 분류 방법)

  • Wang, Jigang;Sung, Yunsick
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2022.05a
    • /
    • pp.436-437
    • /
    • 2022
  • 차량에 부착된 블랙박스의 교통사고 동영상은 사고 발생시 사고를 분석하기 위한 핵심 자료로 다양하게 활용되고 있다. 교통사고 동영상을 자동으로 분류할 수 있다면, 해당 동영상의 활용도를 더욱 높일 것으로 판단된다. 본 논문에서는 텍스트 기반 교통사고 특징 추출 및 분류 방법을 제안한다. 교통사고 동영상을 변환한 JSON 파일에서 불변 특징, 정적 특징 그리고 동적 특징을 추출하고 결합하여 합성 특징을 생성한다. 마지막으로 합성 특징을 사용하여 교통사고 동영상을 분류한다.

Research on Understanding Churned Customer and Application of Marketing in Telco. industry Using XAI (XAI를 활용한 통신사 이탈고객의 특성 이해와 마케팅 적용방안 연구)

  • Lim, Jinhee
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2022.05a
    • /
    • pp.21-24
    • /
    • 2022
  • 최근 통신업계에서는 축적된 빅데이터를 활용하여 고객의 특성을 이해하고 맞춤형 마케팅에 이용하려는 노력이 지속되어 왔다. 본 연구에서는 CatBoost 모델을 사용하여 이탈 가능성이 높은 고객을 예측하고 XAI(eXplainable Artificial Intelligence) 기법 중 하나인 SHAP을 적용하여 이탈에 영향을 미치는 요인을 설명하고자 하였다. SHAP의 global explanation 기법을 사용하여 특정 고객 segmentation 에 대한 이해력을 높이고, local explanation 기법을 사용하여 개별 고객에 대한 설명과 개인화 마케팅에 적용 가능성을 제시하였다. 본 연구는 기존의 이탈 예측모델인 블랙박스 모델이 갖는 한계점을 극복하고 고객의 특성을 이해하여 실제 비즈니스에 활용 가능성을 높였다는 점에서 의의를 가진다.

Object Detection Method for Developing a Path Change Violation Image Analysis System (진로변경 위반 영상 분석을 위한 객체 인식 방법)

  • Choi, Min-Seong;Choi, Bongjun;Moon, Mikyeong
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2022.07a
    • /
    • pp.499-500
    • /
    • 2022
  • 차량용 블랙박스의 대중화와 '스마트 국민 제보' 애플리케이션 도입에 따른 영향으로 교통법규 위반 공익신고 건수가 급증하면서 대응해야 할 담당 경찰 인력이 부족한 상황이다. 이러한 인력 부족 문제를 해결하기 위해서 인공지능(AI) 알고리즘을 활용하여 신고된 영상의 위법 여부를 자동으로 분석할 필요가 있다. 본 논문에서는 공익신고의 대부분을 차지하고 있는 진로변경 위반 영상 분석을 위한 객체 인식 방법에 대한 연구 내용을 기술한다. 이 연구에서는 딥러닝 알고리즘과 컴퓨터 비전 알고리즘을 통해 진로변경 위반 분석에 필요한 차량과 실선 객체를 인식하여 진로변경 위반 영상 분석에 활용할 수 있도록 한다.

  • PDF

Assurance of HIT (head impulse test, Saccade based Vestibular Anomaly Detection) using Confidence Interval of Optical Flow Comparison on Wasserstein Metric (Optical Flow 기반의 Saccade 탐지를 통한 전정기관 이상 검출과 Dowhy 기반의 연관 관계의 신뢰도 검정)

  • Ji, Myeongjin;Kim, Tae-Hyun;Kim, Seong-Whan
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2021.05a
    • /
    • pp.273-276
    • /
    • 2021
  • 최근의 기계 학습 (딥러닝)은 기존의 전통적인 통계 분석 방법들에 비해 효율성과 정확도가 높은 장점이 있지만, 처리과정이 블랙박스와 같아 결과 값의 중요한 원인 또는 근거 요인을 찾기 어렵다는 단점을 가지고 있다. 이를 해결하기 위한 최근의 XAI (eXplainable AI) 연구를 기반으로 하여, 본 논문에서는 의료기관에서 전정기관의 이상을 판별하기 위해 수작업으로 이루어지고 있는 HIT (head impulse test) 테스트 결과를 자동화하고, 설득력 있는 신뢰도 검정을 위해, XAI 기반 DoWhy 프레임 워크를 사용하였다. 전정기관 이상으로 의심되는 환자의 동공 움직임을 optical flow 로 추적하고, 정상인과의 Wasserstein metric 의 DoWhy 검증을 통해 전정기관 이상 여부의 신뢰도 구간을 검정한다.

Performance Analysis of Explainers for Sentiment Classifiers of Movie Reviews (영화평 감성 분석기를 대상으로 한 설명자의 성능 분석)

  • Park, Cheon-Young;Lee, Kong Joo
    • Annual Conference on Human and Language Technology
    • /
    • 2020.10a
    • /
    • pp.563-568
    • /
    • 2020
  • 본 연구에서는 블랙박스로 알려진 딥러닝 모델에 설명 근거를 제공할 수 있는 설명자 모델을 적용해 보았다. 영화평 감성 분석을 위해 MLP, CNN으로 구성된 딥러닝 모델과 결정트리의 앙상블인 Gradient Boosting 모델을 이용하여 감성 분류기를 구축하였다. 설명자 모델로는 기울기(gradient)을 기반으로 하는 IG와 레이어 사이의 가중치(weight)을 기반으로 하는 CAM, 그리고 설명가능한 대리 모델을 이용하는 LIME과 입력 속성에 대한 선형모델을 추정하는 SHAP을 사용하였다. 설명자 모델의 특성을 보기 위하여 히트맵과 관련성 높은 N개의 속성을 추출해 보았다. 설명자가 제공하는 기여도에 따라 입력 속성을 제거해 가며 분류기 성능 변화를 측정하는 정량적 평가도 수행하였다. 또한, 사람의 판단 근거와의 일치도를 살펴볼 수 있는 '설명 근거 정확도'라는 새로운 평가 방법을 제안하여 적용해 보았다.

  • PDF