• 제목/요약/키워드: 브레이징 용접

검색결과 110건 처리시간 0.019초

브레이징한 2상 스테인리스강 UNS32550의 미세조직 및 기계적 특성 (Microstructure and Mechanical Property of Brazed Joint in Duplex Stainless Steel, UNS32550)

  • 김대업;강정윤
    • Journal of Welding and Joining
    • /
    • 제21권2호
    • /
    • pp.64-69
    • /
    • 2003
  • The bonding phenomena and mechanical property of duplex stainless steel during brazing have been investigated. The UNS32550 was used for base metal, and the MBF50 was used for insert metal. Brazing was carried out under the various conditions (brazing temperature : 1473K, 1498K, holding time : 0∼1.8ks). There were various microconstituents in the bonded interlayer because of reaction between liquid insert metal and base metal. In the early stage of brazing, BN is formed in the bonded interlayer and base metal near the bonded layer. Cr made is formed in the bonded interlayer. The amount of BN and Cr nitrides decrease with the increase of bonding temperature and holding time. Superior shear strength of 550MPa is obtained by restraining the formation of nitrides. (Received January 17, 2003)

2상 스테인리스강과 크롬동합금의 브레이징부 생성상의 생성기구에 관한 연구 (A Study on the Formation Mechanism of Microconstituents in Brazed Joint of Duplex Stainless Steel and Cr-Cu Alloy)

  • 김대업
    • Journal of Welding and Joining
    • /
    • 제19권5호
    • /
    • pp.534-539
    • /
    • 2001
  • The formation mechanism of microconstituents in brazed joints of duplex stainless steel and Cr-Cu alloy which is an essential process of rocket engine manufacturing was investigated using Cu base insert metal. $SUS329J_3L$ and C18200 were used for base metal and AMS 4764 was used for insert metal. The brazing was carried out under various conditions. There were various phases in the joints, because of reaction between liquid insert metal and base metals. Since liquid insert metal reacts with duplex stainless steel, liquid Cu from insert metal infiltrated into the $\alpha/\beta$ interface of duplex stainless steel. Through the process of Cu infiltration, isolated stainless steel pieces come into the liquid insert metal. Since liquid insert metal reacts with Cr-Cu alloy. Cr precipitates from C18200 come into the liquid insert metal. With increment of bonding temperature and holding time, amounts and sizes of phases increased. but Cr-Mn compounds decreased at 1303k for 1.2ks and Mn-rich phases disappeared Fe-Cr compounds formed.

  • PDF

최신의 고능률 브레이징 기술개발 동향 (Recent Study of Technical Development for High Efficient Brazing)

  • 유호천
    • Journal of Welding and Joining
    • /
    • 제34권2호
    • /
    • pp.36-45
    • /
    • 2016
  • Recent developing tendency for technologies of high efficient brazing are studied by searching of NDSL, Science Direct, KIPRIS, PCT and so on. Active metal brazing, arc brazing, fluxless brazing, brazing with low melting point, reactive air brazing, laser brazing, laser droplet brazing are investigated. By optimal selecting of the above mentioned technologies, it needs to investigate an economical metallurgical design and the advanced brazing methods. To improve the embrittlement of intermetallic compound at brazing interface, it must be studied the inexpensive variant metals including nonmetals and the heat sources(MIG, TIG, Laser) by hybrid techniques.

Ag계 Filler Metal을 사용한 YSZ와 STS430의 브레이징 접합시 Ti, Sn의 함량 변화가 접합강도에 미치는 영향 (The Effect of Ti and Sn Contents on the Shear Bonding Strength of Brazing Joint of YSZ to STS430 using Ag Based Filler Metals)

  • 이기영;박현균
    • Journal of Welding and Joining
    • /
    • 제32권1호
    • /
    • pp.66-70
    • /
    • 2014
  • In Ti active brazing of YSZ to STS 430 using Ag-Cu Filler Metal, the effect of Ti contents on the shear bonding strength were investigated together with the effect of brazing temperature and holding time. The addition of Ti in Ag-Cu Filler Metal increased the bonding strength up to 4.68% Ti, followed by the decrease with further addition. This seems to be caused by formation of TixOy at the reaction layer. Brazing temperature was optimized at $960^{\circ}C$ among a given temperature ranges. The addion of Sn to Ag-Cu filler metal brought the decrease of its melting temperature its melting temperature without a significant decrease of bonging strength.

천이액상화접합에 대하여 (On the transient liquid phase diffusion bonding)

  • 강정윤
    • Journal of Welding and Joining
    • /
    • 제7권2호
    • /
    • pp.12-24
    • /
    • 1989
  • 천이액상확산접합법은 접합계면에 일시적으로 액상이 형성되기 때문에, 고상확산접합법과 비교 하여 비교적 쉽게 금속결합을 이룰 수 있을 뿐만 아니라, 정밀하게 표면을 가공할 필요가 없으 며, 접합압력이 거의 필요 없다는 것이 잇점이라고 할 수 있다. 도한, 접합온도에서 등온응고되 기 때문에, 브레이징법과 비교하여 접합계면에 취약한 금속간화합물(Metallic Compound)이 생 성되지 않으므로, 기계적성질 및 내식성이 우수한 접합이음부를 얻을 수 있다는 잇점이 있다. 따라서, 본 접합법은 원리적으로 모재(Base Metal)와 거의 같은 정도의 물리적, 화학적, 기계적 성질을 갖는 접합이음부(Joint or Bonded Interlayer)를 얻을 수 있는 접합법이라고 생각되어진 다. 본 해설에서는 천이액상확산접합법의 기본원리, 접합기구, 접합인자 및 실용된 예에 대해서 서술하고자 한다.

  • PDF

항공용 가스터빈 엔진 개발 시험 사례 소개 (한화테크윈 경험 사례 소개)

  • 신동익
    • 기계저널
    • /
    • 제57권11호
    • /
    • pp.44-49
    • /
    • 2017
  • 항공용 가스터빈엔진 개발은 전문성과 경험을 요하는 많은 요소기술과 시험설비, 그리고 상당한 개발기간과 세부단계별 검증을 필요로 하는 복잡한 프로세스로 구성된다. 고온/고압 및 고속 회전 등 매우 가혹한 조건에서 운용되는 제품 특성 때문에 장납기 및 고가의 내열/고강도 소재 혹은 주단조 개발, 정밀한 제작 치수 및 공정관리, 코팅/브레이징/용접 등 고 난이도의 특수공정관리, 정교한 조립 및 다양한 종류의 엔진 검증 시험 등을 필요로 하며 이러한 이유로 상세설계 이후의 조립/시험 단계에서 설계변경이 발생할 경우 개발일정 및 비용 관점에서 제품개발에 큰 부담을 초래하게 된다. 공력/이차유로/열전달/구조/동특성/시스템 설계 등 개발 단계별 다양한 기법의 시뮬레이션 및 사전 검증시험 등의 중요성이 크게 부각된다. 이 글에서는 한화테크윈(혹은 HTW 로 표기)의 엔진개발 경험에 기반한 단계별 개발 시험의 종류, 필요 시험 설비 및 한화테크윈의 설비 운용 특징에 대해 소개하고자 한다.

  • PDF

은(Ag)계 활성금속을 사용한 질화 알미늄(AlN)과 Cu의 브레이징 (Brazing of Aluminium Nitride(AlN) to Copper with Ag-based Active Filler Metals)

  • 허대;김대훈;천병선
    • Journal of Welding and Joining
    • /
    • 제13권3호
    • /
    • pp.134-146
    • /
    • 1995
  • Aluminium nitride(AlN) is currently under investigation as potential candidate for replacing alumium oxide(Al$_{2}$ $O_{3}$) as a substrate material for for electronic circuit packaging. Brazing of aluminium nitride(AlN) to Cu with Ag base active alloy containing Ti has been investigated in vacuum. Binary Ag$_{98}$ $Ti_{2}$(AT) and ternary At-1wt.%Al(ATA), AT-1wt.%Ni(ATN), AT-1wt.% Mn(ATM) alloys showed good wettability to AlN and led to the development of strong bond between brate alloy and AlN ceramic. The reaction between AlN and the melted brazing alloys resulted in the formation of continuous TiN layers at the AlN side iterface. This reaction layer was found to increase by increase by increasing brazing time and temperature for all filler metals. The bond strength, measured by 4-point bend test, was increased with bonding temperature and showed maximum value and then decreased with temperature. It might be concluded that optimum thickness of the reaction layer was existed for maximum bond strength. The joint brazed at 900.deg.C for 1800sec using binary AT alloy fractured at the maximum load of 35kgf which is the highest value measured in this work. The failure of this joint was initiated at the interface between AlN and TiN layer and then proceeded alternately through the interior of the reaction layer and AlN ceramic itself.

  • PDF

Ag-Ti계 합금을 사용한 SiC/SiC 및 SiC/연강 브레이징에 대한 연구 (A Study on SiC/SiC and SiC/Mild steel brazing by the Ag-Ti based alloys)

  • 이형근;이재영
    • Journal of Welding and Joining
    • /
    • 제14권4호
    • /
    • pp.99-108
    • /
    • 1996
  • The microstructure and bond strength are examined on the SiC/SiC and SiC/mild steel joints brazed by the Ag-Ti based alloys with different Ti contents. In the SiC/SiC brazed joints, the thickness of the reaction layers at the bond interface and the Ti particles in the brazing alloy matrices increase with Ti contents. When Ti is added up to 9 at% in the brazing alloy. $Ti_3SiC_2$ phase in addition to TiC and $Ti_5Si_3$ phase is newly created at the bond interface and TiAg phase is produced from peritectic reaction in the brazing alloy matrix. In the SiC/mild steel joints brazed with different Ti contents, the microstructure at the bond interface and in the brazing alloy matrix near SiC varies similarly to the case of SiC/SiC brazed joints. But, in the brazing alloy matrix near the mild steel, Fe-Ti intermetallic compounds are produced and increased with Ti contents. The bond strengths of the SiC/SiC and SiC/mild steel brazed joints are independent on Ti contents in the brazing alloy. There are no large differences of the bond strength between SiC/SiC and SiC/mild steel brazed joints. In the SiC/mild steel brazed joints, Fe dissolved from the mild steel does not affect on the bond strength of the joints. Thermal contraction of the mild steel has nearly no effects on the bond strength due to the wide brazing gap of specimens used in the four-point bend test. The brazed joints has the average bond strength of about 200 MPa independently on Ti contents, Fe dissolution and joint type. Fracture in four-point bend test initiates at the interface between SiC and TiC reaction layer and propagates through SiC bulk. The adhesive strength between SiC and TiC reaction layer seems to mainly control the bond strength of the brazed joints.

  • PDF

1000MPa급 DP강 MIG 아크 브레이징 접합부의 기계적 성질에 미치는 브레이징 전류의 영향 (Effects of Brazing Current on Mechanical Properties of Gas Metal Arc Brazed Joint of 1000MPa Grade DP Steels)

  • 조욱제;윤태진;곽승윤;이재형;강정윤
    • Journal of Welding and Joining
    • /
    • 제35권2호
    • /
    • pp.23-29
    • /
    • 2017
  • Mechanical properties and hardness distributions in arc brazed joints of Dual phase steel using Cu-Al insert metal were investigated. The maximum tensile shear load was 10.4kN at the highest brazing current. It was about 54% compared to tensile load of base metal. This joint efficiency is higher than that of joint of DP steel using Cu-based filler metals which are Cu-Si, Cu-Sn. Fracture positions can be divided into two types. Crack initiation commonly occurred at three point junction among upper sheet, lower sheet and the fusion zone. However crack propagations were different with increasing the brazing current. In case of the lower current, it instantaneously propagated along with the interface between fusion zone and upper base material. On the other hand, in case of higher current, a crack propagation occurred through fusion zone. When the brazing current is low (60, 70A), the interface shape is flat type. However the interface shape is rough type, when the brazing current is high (80A). It is thought that the interface shapes were the reason why the crack propagations were different with brazing current. The interface was the intermetallic compounds which consisted of $(Fe,Al)_{0.85}Cu_{0.15}$ IMC formed by crystallization at $1200^{\circ}C$during cooling. Therefore the maximum tensile shear load and the fracture behavior were determined by a interface shape and effective sheet thickness of the fracture position.

지상연소시험용 실물형 재생냉각 연소기(확대비 12)의 설계 및 제작 (Design and Fabrication of Full-Scale Regenerative Cooling Combustion Chamber (${\varepsilon}$=12) of Liquid Rocket Engine for Ground Hot Firing Tests)

  • 김종규;한영민;서성현;이광진;최환석
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2007년도 제29회 추계학술대회논문집
    • /
    • pp.114-118
    • /
    • 2007
  • 본 연구는 30ton급 액체로켓엔진 지상연소시험용 연소기의 설계 및 제작에 관한 것이다. 본 연소기는 연소압력이 60 bar, 노즐 확대비가 12이며, 헤드부와 연소실부가 용접되는 일체형 재생냉각형 연소기이다. 헤드부는 저온에서 기계적 특성이 좋은 STS316L을 사용하였다. 연소실부는 실린더부, 노즐목부, 1차 노즐부, 2차 노즐부로 구성되어 있다. 연소실부의 내피 재질은 동합금 /STS319J1/STS316L, 외피 재질은 STS329J1을 사용하였다. 선반, 밀링, MCT, 롤링 및 프레싱 등의 기계적 가공을 통하여 단품들을 완성하였다. 이러한 각 단품들을 조립하여 일반 용접 및 전자빔 용접, 브레이징 등을 적용하여 일체형으로 접합하였다.

  • PDF