• Title/Summary/Keyword: 브레이싱 형태

Search Result 11, Processing Time 0.017 seconds

Experimental Study on the Presentation of Adequate Type and Number of Bracing Panel for Design of U-Shaped Steel Box Girder (U형 강박스거더의 휨설계를 위한 합리적인 브레이싱의 형태 및 패널 수 도출에 관한 실험적 연구)

  • Shim, Nak-Hoon;Park, Young-Suk
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.11 no.1
    • /
    • pp.68-76
    • /
    • 2007
  • In the present study, tests for U-type steel box girder are performed to observe the effects of W-type and X-type of top lateral bracings on the bending behavior of the U-type steel box girder system. Another objective of the present study is to investigate the adequacy of the currently available design formula. For the structural tests, the test specimen with two third scale of the system constructed in the field was used. In this test, several different spacings are used for the top lateral bracings. The stresses measured from the bending tests are compared with those by the formula proposed by Helwig. An adequate type and the required number of panel for diagonal bracing was obtained.

Evaluation of Seismic Performance on Shear Walls in Steel House (스틸하우스 전단벽체의 내진성능평가)

  • 이재석;이승은;홍건호;김원기
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.6 no.6
    • /
    • pp.65-72
    • /
    • 2002
  • This study estimates steel house shear wall's seismic performance depending on trend of seismic design. As a result at cyclic-test, the capability of energy dissipation about X1SPCH during this test is good enough. The capability of energy dissipation of X3SPCH and X4SPCH was better than that of X1SPCH. The X2SPCH which is similar to real X-braced shear wall has better seismic performance than shear wall braced with structural sheathing materials on pseudo-dynamic test.

A Development of Seismic Rehabilitation Method of RC Buildings Strengthened with X-Bracing Using Carbon Fiber Composite Cable (X-가새형 탄소섬유케이블을 이용한 중·저층 철근콘크리트 건물의 내진보강법 개발)

  • Lee, Kang-Seok
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.18 no.3
    • /
    • pp.1-9
    • /
    • 2014
  • Improving the earthquake resistance of buildings through seismic retrofitting using steel braces can result in brittle failure at the connection between the brace and the building, as well as buckling failure of the braces. In this study, a non-compression cross-bracing system using the Carbon Fiber Composite Cable (CFCC), which consists of CFCC bracing and bolt connection was proposed to replace the conventional steel bracing. This paper presented the seismic resistance of a reinforced concrete frame strengthened using CFCC X-bracing. Cyclic loading tests were carried out, and the maximum load carrying capacity and ductility were investigated, together with hysteresis of the lateral load-drift relations. Test results revealed that the CFCC X-bracing system installed RC frames enhanced markedly the strength capacity and no buckling failure of the bracing was observed.

Retrofitting Effects and Structural Behavior of RC Columns Strengthened with X-Bracing Using Carbon Fiber Anchor (탄소섬유 앵커 X-브레이싱으로 보강된 철근콘크리트 기둥의 구조거동 및 내진보강 효과)

  • Sim, Jong-Sung;Lee, Kang-Seok;Kwon, Hyuck-Woo;Kim, Hyun-Joong
    • Journal of the Korea Concrete Institute
    • /
    • v.24 no.3
    • /
    • pp.323-331
    • /
    • 2012
  • This paper presents a new strengthening method on concrete column against seismic loads for structural performance tests. An X-bracing using high performance carbon fiber threads called the "Carbon fiber anchor X-bracing system" is used to connect RC frames internally. The carbon fiber sheet is wrapped around the column to fix the top and bottom of the column after Super anchor was installed by drilling hole on the column. The structural performance was evaluated experimentally and analytically. Two types of columns specimens were made; flexure fracture scaled model and shear fracture scaled model. For the performance evaluation, cyclic loading tests were conducted on moment and shear resisting columns with and without X bracing. Test results confirmed that the bracing system installed on RC columns enhanced the strength capacity and provided adequate ductility.

A Study on the Spectral Fatigue Analysis Method for Semi-submersible Rig Structure (반 잠수식 시추선의 스펙트랄 피로해석에 관한 연구)

  • 조규남
    • Computational Structural Engineering
    • /
    • v.8 no.2
    • /
    • pp.95-102
    • /
    • 1995
  • 해양구조물의 피로파괴 형태는 매우 다양하며 설계단계에서 구조요소의 피로수명 예측은 중요하다. 각가지 피로해석 방법에 대해서 연구가 활발히 진행되었으며 접근방법에 대한 논의도 활발한 연구와 함께 진행되었다. 본 논문에서는 피로해석 방법중 스펙트랄 방법과 그 구성요소에 대해서 연구되었으며 간략화된 피로해석 방법이 제시되었고 그 특성이 비교 검토되었다. 두가지 피로해석 방법의 장단점이 조사되었고 관련된 인자인 응력집중계수, 응력폭-수명 관계 곡선 또한 연구되었다. 전형적인 반 잠수식시추선의 브레이싱 부재의 피로수명 예측을 위하여 간략화된 피로해석 방법과 스펙트랄 피로해석 방법이 작용되었으며 이를 통하여 두 방법의 유용성이 확인되었다. 또한 간략화된 피로해석 방법을 이용한 민감도 해석이 수행되었다. 본 논문에서 수행된 피로해석 결과는 스펙트랄 피로해석 방법이 보다 현실적인 피로수명 예측을 할 수 있는 방법이라는 사실을 보여주었다.

  • PDF

Comparison of Lower-Limbs Muscle Activity according to the Abdominal Co-contractive Activation (복부 동시수축 형태에 따른 하지 근활성도 비교)

  • Lee, Hyun-ju;Lee, Nam-gi;Tae, Ki-sik
    • Journal of rehabilitation welfare engineering & assistive technology
    • /
    • v.10 no.1
    • /
    • pp.81-86
    • /
    • 2016
  • The purpose of this study was to investigated the muscle activity difference of lower extremity by abdominal co-contractive activation. 30 healthy women without pain in the low back and lower extremity were conducted. Muscle activities of lower extremity were measured with the active straight leg raise (ASLR) in 20cm raised from the floor without bending the knee at rest, abdominal drawing-in maneuver (ADIM) and abdominal bracing maneuver (ABM), respectively. Hip adductor longus (HadL), rectus femoris (RF), and biceps femoris (BF) muscle activity in the Abdominal bracing maneuver were statistically significantly higher, also gluteus medius (Gmed) and tibialis anterior (TA) muscle activity in the ADIM were higher. We provide the evidence to the positive effects of individual abdominal co-contractive activation training which can enhance postural stability and lower extremity strengthening with volitional preemptive abdominal contraction.

Optimal Design of Linear Viscous Damping System for Vibration Control of Adjacent Building Structures (인접구조물의 진동제어를 위한 선형감쇠시스템의 최적설계)

  • Park, Kwan-Soon;Ok, Seung-Yong;Koh, Hyun-Moo
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.10 no.3 s.49
    • /
    • pp.85-100
    • /
    • 2006
  • This paper proposes an optimal design method of linear viscous dampers for the seismic performance of two adjacent structures with different heights. Accordingly, connection method using diagonal bracing between two floors and connection method between two structures are considered, and the effectiveness of the latter method is confirmed through the comparison of the frequency response functions with respect to damping capacity. Moreover, optimal damping to minimize the response of the adjacent structures in the frequency domain is found. The sensitivity of natural frequency and modal damping according to the damper capacity at each floor is obtained for the optimally designed system. From the sensitivity analysis, the modal damping is evaluated to be very sensitive to the damper installed at higher floor. Therefore, sensitivity-based damping distribution method is proposed. Diagonal bracing connection method, uniform distribution method and sensitivity-based distribution method are compared to each other in terms of seismic performance. The comparative results demonstrate that the proposed method is an effective seismic design method for the adjacent structures.

Experimental Study on the Top- Lateral Bracing of U-Type Steel Box Girders Using Real Size Specimen: Torsional Stiffness (실물모형 시험를 이용한 U형 강박스거더의 상부 수평브레이싱에 관한 실험적 연구: 비틂강성)

  • Shim, Nak Hoon;Park, Young Suk
    • Journal of Korean Society of Steel Construction
    • /
    • v.18 no.4
    • /
    • pp.447-456
    • /
    • 2006
  • In this study, a torsional test for U-type steel box girders was performed to observe the effects of the kind of panel for top lateral walateral bracings on the torsional behavior of the U-type steel girder system. For the structural tests, the test specimen with a two-thirds scale of the system actually constructed in the field was used. In the torsional test to observe the efects of top lateral bracings, the most economical arrangement of the top lateral bracing was found to be the panel width to length ratio of 1:1.5 with the inclined angle of $40^{\circ}$.

Torsional Behavior of Ballastless Railway Plate Girder Bridge (무도상 철도판형교의 비틀림거동 특성)

  • Hyun, Seung Hyuk;Hwang, Won Sub;Park, Sung Jun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.41 no.3
    • /
    • pp.201-208
    • /
    • 2021
  • In this paper, the effect on the lateral and torsional behavior of ballastless railway plate girder bridge by the installation of the lower horizontal bracing has been reviewed. First of all, the most efficient lower bracing arrangement has been reviewed by comparing and examining the lateral displacement due to the train load, targeting analysis models with different arrangement types of lower bracing. Next, the research on torsional behavior of plate girder bridge with lower bracing has been conducted. In addition, the torsion constant from FEM analysis results has been compared with the torsion constant of a railroad plate girder bridge with a closed section by substituting the upper and lower horizontal bracing with equivalent thickness. Based on this comparison, the impact on the bridge span length and the cross section area of the lower bracing has been examined. Through this study, the curve graph related to lateral buckling moment and torsional constant ratio is presented and the range of plate girder bridge requiring torsional reinforcement is proposed.

External Post-tensioning Strengthening of Composite Girder Bridge Using Lateral Distribution of Post-tensioning Force (긴장력 횡분배를 이용한 강합성형교 외부 후 긴장 보강)

  • Park, Young Hoon;Park, Yong Gul
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.29 no.6A
    • /
    • pp.587-596
    • /
    • 2009
  • This study analyzes the lateral distribution behavior of external post-tensioning force and evaluates the possibility of strengthening the servicing composite girder bridge by adopting the external post-tensioning force to the parts of the bridge girder. From the results of experiments and analyses, it is founded that the composite girder bridge can be strengthened by applying the external post-tensioning force to the parts of the bridge girder. It is also proved that bracing improve the lateral distribution behavior of post-tensioning force. The lateral distribution behavior of post-tensioning force which influenced by stiffness ratio, girder spacing and span length is changed by the bridge type and the location of tensioned girder. From the results of analyses, set up an equation which can predict the lateral distribution behavior of external post-tensioning force and evaluate the rationality.