• Title/Summary/Keyword: 브랜스필드 분지

Search Result 5, Processing Time 0.019 seconds

Chartacteristics of Water-bottom Reflection Coefficients in Bransfield Strait, Antarctic Peninsula (남극 브랜스필드 해협의 해저면 반사계수 특성)

  • Jin, Yeong Geun;Hong, Jong Guk;Lee, Deok Gi
    • Journal of the Korean Geophysical Society
    • /
    • v.2 no.4
    • /
    • pp.241-250
    • /
    • 1999
  • Reflection coefficients of the seafloor have been calculated from the amplitude ratio of secondary to primary water bottom reflection in seismic data obtained from Bransfield Strait, Antarctic Peninsula. Test processing for the coefficients shows that moving average is effective to reduce severe fluctuation of the coefficient measured at each point. Relationship between the coefficients and the properties of water bottom is analyzed to illuminate geological environment. In the central Bransfield Basin, the magnitude of reflection coefficients decreases as it is distant from the sedimentary sources. Reflection coefficients range from 0.12 to 0.2 near the continental slope of the basin, and from 0.1 to 0.12 in the basin floor. In the western Bransfield basin, reflection coefficients between 0.2 to 0.3 are obtained from the area eroded by glacial movement. On the volcanic structures near Deception Island, the coefficients show relatively high values more than 0.2. Paleo-geological structures uplifted by tectonic movement and outcropped by glacial erosion have relatively high coefficients.

  • PDF

Seismic Structures of the Eastern Bransfield Basin, Antarctic Peninsula (남극반도 동부 브랜스필드분지의 탄성파구조)

  • Jin, YoungKeun;Nam, SangHeon;Kim, YeaDong;Lee, JooHan
    • Journal of the Korean Geophysical Society
    • /
    • v.7 no.2
    • /
    • pp.99-112
    • /
    • 2004
  • The Basin, a marginal basin located between the Antarctic Peninsula and the South Shetland Islands, is consist of three small basins, the Central, Eastern, Western Basins. Seismic data obtained on December 1995 show well-defined spreading ridges, basement highs, faults, morphology of the basin, distribution of sediments, crustal and sedimentary deformation, diapirs, and contourites. The main spreading axis of the Central Bransfield Basin connecting Deception and Bridgeman Islands continues up to the central part of the Eastern Basin, whereas deep basin covered by thick sediments without any spreading structures develops in the northeastern part. This indicates that back-arc spreading along the axis of the Bransfield Basin has been taken place in the southwestern part of the Eastern Basin, not in the northeastern part. Many NW-SE trending faults perpendicular to the axis of the basin would be related with strike-slip movement of the Shackleton Fracture. Zone. Extensinal strutures like deep basin without any spreading structures in the northeastern part, normal faults and diapirs on both continental slopes of the Eastern Basin would be formed by extension as a consequence of the sinistral movement between Antarctic and the Scotia plates.

  • PDF

Radiolarians from Core Sediments (A9-EB2) in Bransfield Basin, West Antarctica (서남극 브랜스필드 동부 분지내 코아 퇴적물(A9-EB2)의 방산충)

  • Bak, Young-Suk;Lee, Jong-Deock;Yun, Hye-Su;Yoon, Ho-Il;Kim, Hyang-Sook
    • Journal of the Korean earth science society
    • /
    • v.22 no.2
    • /
    • pp.130-137
    • /
    • 2001
  • A total of 58 species of radiolarians belonging to 41 genera were identified in 44 samples from core A9-EB2 of the Bransfield Basin in the Antarctic. The radiolarian assemblages from A9-EB2 are generally very low in abundance.The dominant species are Antarctissa denticulata, A. longa, A. strelkovi, Lithomelissa setosa, Lifhomitra lineata, Peridium longispinum and Phormacantha hystrix, constituting 75% of the total assemblage. Genera Challenge개n and Protocystis belonging to family Challeneriidae, found in core A9-EB2 have been recorded in the Quaternary sediments. Therefore, the geologic age of core A9-EB2 in Bransfield Basin is regarded to be Quternary (Pleistocene-Holocene). Typical circumpolar taxa such as Antarctissa strelkovi, A. denticulata, Cycladophora davisiana and Larcopyle buetschlii are representing the influence of waters from Bellingshausen Sea and Antarctic Circumpolar Current. Plectacantha oikiskos and Phomacantha hystrix are considered as a coastal indicator. Also, low amounts of Lithomelissa setosa are related to pelagic condition and entrance of cold waters from the Western Weddell Sea into Bransfield Basin. Therefore, the core sediments in Bransfield Basin were deposited under the coastal condition mainly influenced by the waters from Bellingshausen Sea and Antarctic Circumpolar Current. but also by the water from the Western Weddell Sea of the open-water condition.

  • PDF

Tectonic Structures and Hydrocarbon Potential in the Central Bransfield Basin, Antarctica (남극 브랜스필드 해협 중앙분지의 지체구조 및 석유부존 가능성)

  • Huh Sik;Kim Yeadong;Cheong Dae-Kyo;Jin Young Keun;Nam Sang Heon
    • The Korean Journal of Petroleum Geology
    • /
    • v.5 no.1_2 s.6
    • /
    • pp.9-15
    • /
    • 1997
  • The study area is located in the Central Bransfield Basin, Antarctica. To analyze the morphology of seafloor, structure of basement, and seismic stratigraphy of the sedimentary layers, we have acquired, processed, and interpreted the multi-channel seismic data. The northwest-southeastern back-arc extension dramatically changes seafloor morphology, volcanic and fault distribution, and basin structure along the spreading ridges. The northern continental shelf shows a narrow, steep topography. In contrast, the continental shelf or slope in the south, which is connected to the Antarctic Peninsula, has a gentle gradient. Volcanic activities resulted in the formation of large volcanos and basement highs near the spreading center, and small-scale volcanic diapirs on the shelf. A very long, continuous normal fault characterizes the northern shelf, whereas several basinward synthetic faults probably detach into the master fault in the south. Four transfer faults, the northwest-southeastern deep-parallel structures, controlled the complex distributions of the volcanos, normal faults, depocenters, and possibly hydrocarbon provinces in the study area. They have also deformed the basement structure and depositional pattern. Even though the Bransfield Basin was believed to be formed in the Late Cenozoic (about 4 Ma), the hydrocarbon potential may be very high due to thick sediment accumulation, high organic contents, high heat flow resulted from the active tectonics, and adequate traps.

  • PDF

K-Ar Age of the flutonic Rock fragments Discovered from the Deception Island and Its Geologic Implication (디셉션 섬에서 발견된 심성암편의 K-Ar 연령과 지질학적 의미)

  • Park, Joo-Un;Park, Kye-Hun;Lee, Jong-Ik;Park, Byong-Kwon
    • The Journal of the Petrological Society of Korea
    • /
    • v.17 no.1
    • /
    • pp.36-43
    • /
    • 2008
  • Many plutonic rock fragments of granitic composition were collected from the Deception Island. We obtained K-Ar ages of $62.5{\pm}1.2\;Ma$ and $140.7{\pm}2.7\;Ma$ from the two samples. Such result contradicts the general belief that most of the volcanic rocks of Deception Island are products of very recent activities and their maximum age does not exceed 200 ka. On the other hand, Mesozoic to Cenozoic rocks produced by subduction-related active magmatism have been reported from both South Shetland Islands and Antarctic Peninsula, located to the north and south of the Deception Island respectively. Also, various kinds of plutonic rocks with granitic composition are distributed widely. Therefore, plutonic rock fragments with granitic composition discovered from the Deception Island seem to indicate their derivation by capturing granitic crustal material underlying volcanic edifice during the volcanic activities, instead of differentiation from magmas related with recent volcanism. Ages and rock types of the plutonic rock fragments suggest arc-related origin just as adjacent South Shetland Islands and Antarctic Peninasula.