• Title/Summary/Keyword: 브라켓

Search Result 299, Processing Time 0.027 seconds

A COMPARATIVE STUDY OF THE SHEAR BOND STRENGTH OF DIFERENT CERAMIC BRACKETS AND ADHESIVES (세라믹 브라켓과 교정용 접착제에 따른 전단 결합 강도의 비교 연구)

  • Lee, Joo-Won;Yoo, Dong-Hwan;Kim, Sang-Cheol
    • The korean journal of orthodontics
    • /
    • v.27 no.2
    • /
    • pp.315-326
    • /
    • 1997
  • The purpose of this study was to evaluate the shear bond strength of three kinds of different ceramic brackets with three different bonding adhesives. 5 specimens for each combination were tested for shear bond strength using Instron and for fracture site using SENL And 3 specimens were cross-sectioned for SEM examination of bonding pattern between bracket, resin and enamel surface. The results were as follows 1. The shear bond strength of chemical curing adhesives were higher than that of light curing adhesives. 2. The shear bond strength of Starfire bracket, chemical-bonded type, was lower than that of Transcend bracket, mechanical-bonded type, and Fascination bracket, combined type. 3. Fracture site of each bracket and tooth surface was examined under a light optical stereoscopic microscope, Transcend groups were mainly at the E/R intderface. Fascination groups were mainly at the COMB interface and Starfire groups were mainly at the R/B interface.

  • PDF

Structural Analysis for Optimal Design of Anchor Bolts and Brackets for Fixing External Finishing Materials (외부마감재 고정용 앙카볼트 및 브라켓의 최적설계를 위한 구조해석)

  • Lee, Suk Young
    • Journal of Energy Engineering
    • /
    • v.29 no.3
    • /
    • pp.91-96
    • /
    • 2020
  • For the anchor bolts and brackets that fix the stone wall, which is an external finishing material, it is necessary to maintain the performance required for the mechanical structure from the initial design stage and secure high durability. For this, the design and safety evaluation in consideration of the load conditions are necessary, so the structural analysis applying the finite element analysis technique was performed as a method to verify durability. As a result of structural analysis for various shapes for optimal design, a reinforcing structure was added to alleviate the maximum stress generated at the rear part of the bracket in contact with the bolt. In addition, a reinforcing plate was additionally attached to the bracket to relieve the stress concentration of the L-shaped bracket to make the stress distribution uniform, so that the safety factor satisfies the standard conditions. In addition, the fatigue life analysis by cyclic load was performed, and the fatigue safety factor was analyzed. As a result, the durability was obtained.

Load-carrying Capacity of Thermal Prestressed Steel Beam with Eccentric Bracket (편심 브라켓 설치 온도프리스트레싱 강재보의 하중저항 성능)

  • Kim, Sang-Hyo;Jung, Chi-Young;Choi, Kyu-Tae;Ahn, Jin-Hee
    • Journal of Korean Society of Steel Construction
    • /
    • v.22 no.6
    • /
    • pp.563-572
    • /
    • 2010
  • This study evaluates the load-carrying capacity of a thermal prestressed steel beam with an eccentric bracket. The steel beam that is proposed in this study has an eccentrically installed cover plate through application of the eccentric bracket. The eccentric bracket helps the steel beam achieve greater sectional stiffness and more efficiently induces prestress. A material non-linear characteristic applied finite element analysis was also conducted to check the validity of the experiments. The results of this study showed that the structural stiffness, yield load, and ultimate strength of the TPSM-applied steel beam with the eccentric bracket increased due to the eccentricity of the cover plate.

Shear bond strength of ceramic and resin brackets used with visible light-cured adhesives (도재 및 레진 브라켓에 대한 광중합 접착제의 전단 접착 강도)

  • Hwang, Yu-Sun;Row, Joon;Hwaang, Chung-Ju
    • The korean journal of orthodontics
    • /
    • v.26 no.2 s.55
    • /
    • pp.233-244
    • /
    • 1996
  • The purpose of this study was to compare the shear bond strength obtained from ceramic and plastic brackets bonded with various light-cured adhesives and to evaluate their debonded failure sites. Plastic brackets, Transcend 6000, Signature and Starflre TMB brackets were bonded with Orthobond, Light Bond and Transbond on one hundred forty extracted human premolar teeth as manufacturer's descriptions. After thermocycling the brackets were debonded with an Instron universal testing machine and the debonded bracket base surfaces were inspected under stereoscope to evaluate the failure sites. Also the shear bond strength and failure patterns with different curing time and with two different source of light were compared. The results were as follows. 1. There were no statistically significant differences among the mean shear bond strength of Orthobond, Light Bond and Transbond in a same bracket group except Plastic bracket group(p<0.05). 2. The mean shear bond strength of each adhesive with different bracket groups showed statistically significant differences. Stafire TMB showed the highest shear bond strenght among the brackets in this study, but there was no statistically singnificant difference with Transcend 6000 while there was statistically significant difference with Signature.(p<0.05) 3. The various bonding failure patterns were occurred among different bracket groups but most of failure sites were bracket base -adhesive interfaces. 4. There were no statistically significant differences in shear bond strength between the groups with curing time of 10 second and 20 second, and between the groups with two different sources of light as long as sufficient light intensity(above $400mWcm^2$) were provided(p<0.05). According to the result, it should be considered in clinical use of ceramic bracket with light-cured adhesives that the shear strengths of ceramic brackets were influenced by the retention from of bracket base as well as the composition of bracket and there was no difference in the shear bond strenght among various light-cured adhesives used in this study.

  • PDF

Tensile Bond Strength of Glass Ionomer Cements (글라스 아이오노대 시멘트의 인장접착강도)

  • BYUN, Seung Min;KWON, Oh-Won
    • The korean journal of orthodontics
    • /
    • v.26 no.3
    • /
    • pp.317-324
    • /
    • 1996
  • This study was conducted to evaluate the tensile bond strength of three commercially available glass ionomer cements as orthodontic bracket adhesives. 120 premolars extracted for orthodontic treatment were prepared for bonding and standard edgewise brackets were bonded with Shofu Glaslonomer Cement (Shofu Co., U.S.A.), GC Fuji ItGC Co., Japan), KETAC-CEM(ESPE Co., West Germany) with different P/L ratio. The tensile bond strength was tested by Instron testing device after 24hours and 3months from bonding. After debracketing, bracket bases were examined to determine the failure sites. The results of this study were as follows: 1. KETAC CEM showed the highest bond strength other than measurement after 24 hours and at its original P/L ratio, and seemed to have clinically a proper bond strength. It seemed, however, that both Shofu Giaslonomer Cement and GC Fuji I had an inappropriate bond strength. 2. The incorporation of additional powder into the mixture improved the tensile bond strength. 3. Prolonged storage time improved the tensile bond strength. 4. Of the failure, failure occured at the tooth-adhesive interface(54.2%) was the most common type. The second type of failure(36.7%) was combination type, where part of the adhesive remained on the tooth and part on the bracket. And the last type of failure(9.1%) occured at the adhesive-bracket interface.

  • PDF

Lip and perioral soft tissue changes after bracket bonding using 3-D laser scanner (브라켓의 접착 전후 입술 주위 연조직의 3차원적 변화)

  • Lee, Won-Je;Lee, Kee-Joon;Yu, Hyung-Seog;Baik, Hyoung-Seon
    • The korean journal of orthodontics
    • /
    • v.41 no.6
    • /
    • pp.411-422
    • /
    • 2011
  • Objective: The aim of this study was to evaluate the lip and perioral soft tissue changes after bracket bonding. Methods: The soft tissue changes in 45 adult patients (age greater than 18 years and less than 29 years) without severe skeletal discrepancy were evaluated using three-dimensional images acquired with a laser scanner before and after bracket bonding was performed using 4 types of labial orthodontic brackets. Results: Among the statistically significant changes in distance observed for the landmarks, the biggest change was observed in forward movement. The landmarks on the lateral sides also showed significant changes. While the landmarks on the upper lip showed significant upward movement, those on the lower lip showed significant downward movement. However, the changes were smaller for the landmarks on the upper lip (average, 0.87 mm) than for the landmarks on the lower lip (average, 1.21 mm). The type of bracket used did not significantly affect the soft tissue changes. Conclusions: These findings will help predict soft tissue changes after bracket bonding for orthodontic treatment.

Shear bond strength of rebonded orthodontic bracket with flowable resin (Flowable resin을 이용한 브라켓의 재접착 시 전단결합강도에 대한 연구)

  • Kim, Dong-Woo;Son, Woo-Sung
    • The korean journal of orthodontics
    • /
    • v.35 no.3 s.110
    • /
    • pp.207-215
    • /
    • 2005
  • This study was performed to evaluate clinical practicality of the rebonding method with flowable resin without the removal of the residual resin on the debonded theeth and debonded bracket base after debonding. The samples of the control group (group I) were rebonded with Transbond XT using the usual rebonding method after the residual resin was removed. At experimental group, the brackets were rebonded with Transbond XT(group II) and CharmFil Flow (group III) without removal of residual resin which is the possibility becoming the index (or rebonding to similar position With initial bonding. The Shear bond Strength of the each group was measured. Patterns of bonding failure were evaluated with modified ARI score. and the shear bond strength according to patterns of bonding failure at experimental group was compared. Between the control group $(6.51\pm1.21MPa)$ and the group II rebonded with Transbond XT $(6.30\pm1.01MPa)$ did not have significantly difference in the shear bond strength (p=0.534), and the shear bond strength of group II was Significantly lower 4han the group III rebonded With CharmFil Flow $(7.29\pm1.54 MPa)$ (P=0.009). At control group, there was not large difference if distribution of bending failure pattern. But at experimental group, bond failure did not occur in interface between the resin-enamel. and bond failure between the resin-bracket, within the resin was distributed similarly. There was not significantly difference in the shear bond strength according to patterns of bonding failure at experimental group (P>0.05) The result of this study showed that the method suggested in this study aid flowable resin as rebonding adhesive could be useful in clinically.

The moment generated by the torque of the orthodontic rectangular wire : Three-dimensional finite element analysis (교정용 각형선재에 부여된 torque가 브라켓에 발생시키는 모멘트에 관한 유한요소법적 분석)

  • Ha, Do-Won;Kim, Young-Suk;Sung, Jae-Hyun
    • The korean journal of orthodontics
    • /
    • v.31 no.3 s.86
    • /
    • pp.335-346
    • /
    • 2001
  • The purpose of this study was to investigate the ideal clinical torque(In the SWA rectangular wire, the torque by the angle between the plane part and twisted part to move the tooth) of the orthodontic rectangular wire which produce the proper labiolingual movement of the single tooth during finishing stage of the orthodontic treatment. The clinical torque is the sum of the play and the active torque which generates the moment at the bracket. The play is calculated by the formula and the active torque is calculated by the computer aided three-dimensional finite element method. The finite element model was consist of the three brackets which formed a row and 3 kinds of orthodontic rectangular wire(stainless steel, TMA, NiTi) which inserted in brackets. Both sides of the model were twisted and the moment generated in the center bracket was calculated. The sizes of seven wires which were used commonly were .016'X.022', .017'X.022', .017'X.025', .018'X.025', .019'X.025', .020'X.025', .021'X.025'. In 018' bracket, 016'X.022', .017'X.022', .017'X.025' wires were inserted and in 022' bracket, all the sizes of wires except .016'X.022' were inserted and tested. The following conclusions could be drawn from this study. 1. The moments generated on the same size of the wires by the same active torque were equal regardless of the bracket slot size. 2. The moments were increased with the size of the wires. The moment generated on the .021'X.025' wire was about 1.75 times as large as that on the .016'X.022' wire regardless of the material. 3. The moments were increased in the order of the NiTi, TMA stainless steel. The moment of the TMA wire was 0.35 times as small as that of the stainless steel wire and the moment of the NiTi was0.16 times as small as that of the stainless steel wire. 4. The moment was decreased as the interbracket distance was increased. 5. To get a desired moment with the specific size and material of the wire on the specific bracket slot, the formula and the results were displayed.

  • PDF

Three-dimensional finite element analysis of the bracket positioning plane in lingual orthodontics (설측 브라켓 부착을 위한 기준평면 설정에 관한 3차원 유한요소법적 연구)

  • Kim, Sun-Hwa;Park, Soo-Byung;Yang, Hoon-Chul
    • The korean journal of orthodontics
    • /
    • v.36 no.1 s.114
    • /
    • pp.30-44
    • /
    • 2006
  • This study was performed to investigate the location of the ideal bracket positioning plane in lingual orthodontics using the three-dimensional finite element method. Displacement of the anterior teeth were evaluated according to the vertical and the angular movements of the bracket positioning plane. To achieve the ideal movement of anterior teeth in the lingual central plane, the location of the force application point and the amount of the moment applied to the four incisors were evaluated. As the bracket positioning plane was moved parallel toward the incisal edge, uncontrolled tipping and extrusion of the maxillary and the mandibular incisors were increased. But lingual tipping of the crown was decreased in the maxillary and the mandibular canines. As the bracket positioning plane was inclined toward the incisal edge, lingual tipping was increased in the 6 anterior teeth and extrusion of incisors and intrusion of the canine was also increased. As the retraction hook of the canine bracket was elongated, lingual tipping and extrusion of the central incisor and mesial movement and extrusion of the lateral incisor were increased. In the canine, mesial and labial movements of the crown were increased. When the moment was applied to the 4 incisors of the maxillary and the mandibular arch in the lingual central plane, 280 gf-mm in the maxillary central incisor, 500 gf-mm in the maxillary lateral incisor, 170 gf-mm in the mandibular central incisor and 370 gf-mm in the mandibular lateral incisor produced bodily movement of the individual tooth.

The effect of chlorhexidine varnish application on the shear bond strength of orthodontic brackets (클로르헥시딘 바니쉬의 적용이 교정용 브라켓의 전단접착강도에 미치는 영향)

  • Im, Dong-Hyuk;Kim, Tae-Woo;Chang, Young-Il;Nahm, Dong-Suk;Yang, Won-Sik;Baek, Seung-Hak
    • The korean journal of orthodontics
    • /
    • v.30 no.2 s.79
    • /
    • pp.215-222
    • /
    • 2000
  • The purpose of this study was to determine whether the application of chlorhexidine varnish affects the shear bond strength and failure pattern of orthodontic brackets or not. The experimental group consisted of 22 human premolars which extracted after chlorhexidine varnish application (4 times for 1 week interval) in vivo, and the control group consisted of 22 human premolars which extracted without any pre-treatment. After all teeth were etched with $37\%$ phosphoric acid gel, metal orthodontic brackets (Q-3002, RMO, USA) were bonded to each tooth using auto-polymerizing orthodontic resin (Ortho-One, Bisco, USA) with the same bonding procedure. The shear bond strength was measured with Instron universal testing machine (model 4466, Instron Ltd., England), and the failure pattern of each bracket was examined with Scanning Electron Microscope (SM 840A, JEOL, Japan). The data were analysed statistically with t-test. The results were as follows : 1. Application of chlorhexidine varnish had no significant effect on the shear bond strength of the orthodontic bracket. 2. There was no significant difference in the failure pattern of orthodontic bracket between the experimental group and the control group.

  • PDF