• Title/Summary/Keyword: 붕괴해석

Search Result 792, Processing Time 0.019 seconds

Macroeconomic Consequences of Pay-as-you-go Public Pension System (부과방식 공적연금의 거시경제적 영향)

  • Park, Chang-Gyun;Hur, Seok-Kyun
    • KDI Journal of Economic Policy
    • /
    • v.30 no.2
    • /
    • pp.225-270
    • /
    • 2008
  • We analyze macroeconomic consequences of pay-as-you-go (PAYGO) public pension system with a simple overlapping generations model. Contrary to large body of existing literatures offering quantitative results based on simulation study, we take another route by adopting a highly simplified framework in search of qualitatively tractable analytical results. The main contribution of our results lies in providing a sound theoretical foundation that can be utilized in interpreting various quantitative results offered by simulation studies of large scale general equilibrium models. We present a simple overlapping generations model with a defined benefit(DB) PAYGO public pension system as a benchmark case and derive an analytical equilibrium solution utilizing graphical illustration. We also discuss the modifications of the benchmark model required to encompass a defined contribution(DC) public pension system into the basic framework. Comparative statics analysis provides three important implications; First, introduction and expansion of the PAYGO public pension, DB or DC, result in lower level of capital accumulation and higher expected rate of return on the risky asset. Second, it is shown that the progress of population aging is accompanied by lower capital stock due to decrease in both demand and supply of risky asset. Moreover, risk premium for risky asset increases(decreases) as the speed of population aging accelerates(decelerates) so that the possibility of so-called "the great meltdown" of asset market cannot be excluded although the odds are not high. Third, it is most likely that the switch from DB PAYGO to DC PAYGO would result in lower capital stock and higher expected return on the risky asset mainly due to the fact that the young generation regards DC PAYGO pension as another risky asset competing against the risky asset traded in the market. This theoretical prediction coincides with one of the firmly established propositions in empirical literature that the currently dominant form of public pension system has the tendency to crowd out private capital accumulation.

  • PDF

Analysis of the influence of existing parallel tunnels according to the location of the new tunnel (신설터널의 위치에 따른 기존 병렬터널의 영향 분석)

  • Yun, Ji-Seok;Kim, Han-Eol;Nam, Kyoung-Min;Jung, Ye-Rim;Cho, Jae-Eun;Yoo, Han-Kyu
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.24 no.2
    • /
    • pp.193-215
    • /
    • 2022
  • Recently, ground structures have reached saturation, and underground construction using underground structures such as tunnels has been in the spotlight as a way to solve increasing traffic difficulties and environmental problems. However, due to the increasing number of underground structures, close construction is inevitable for continuous underground development. When a new underground structure is constructed closely, stability may become weak due to the influence on the existing tunnel, which may cause collapse. Therefore, analyzing the stability of existing tunnels due to new structures is an essential consideration. In this study, the effect of excavating new tunnels under parallel tunnels on existing parallel tunnels was analyzed using numerical analysis. Using the Displacement Control Model (DCM), the volume loss generated during construction was simulated into three case (0.5%, 1.0%, and 1.5%). Based on the center of the pillar, the distance where the new tunnel is located was set to 5 m, 6 m, 7 m, 8 m, 9 m, and the space for each distance were set to 5 (0D1, 0.37D1, 0.75D1, 1.13D1, 1.5D1). In general, as the volume loss increased and the distance approached, the maximum displacement and angular displacement increased, and the strength/stress ratio to evaluate the stability of the pillar also decreased. As a result, when the distance between the new tunnel and the center of the pillar is 5 m, the space is 0D1, and the volume loss is 1.5%, the stability of the existing parallel tunnel is the weakest.