• Title/Summary/Keyword: 불화중수소 화학레이저

Search Result 6, Processing Time 0.016 seconds

Numerical Analysis of Variations of Laser Parameters in DF Chemical Laser According to Pressure Ratio (불화중수소 화학레이저의 연료 및 산화제 분사 압력비에 따른 레이저 발진 성능 특성 변화에 관한 수치적 연구)

  • Park Jun Sung;Baek Seung Wook
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2004.10a
    • /
    • pp.9-12
    • /
    • 2004
  • A numerical simulation is presented for investigating the effects of pressure ratio of $D_2$ injector to supersonic nozzle on the Population inversion in the DF chemical laser cavity, while a latins concurrently takes place. In this study, these phenomena are investigated by means of analyzing the distributions of the DF excited molecules, while simultaneously estimating the maximum small signal gains and power in the DF chemical laser cavity. Major results reveal that the higher $D_2$ injection pressure provides a favorable condition for $DF^{(1)}$-$DF^{(0)}$ transition to generate the higher power laser beam.

  • PDF

Numerical Study of DF Chemical Laser Performance with Variations of D2 Injection Angles (중수소 분사각에 따른 불화중수소 화학레이저의 성능향상에 관한 수치적 연구)

  • Park, Jun-Sung;Baek, Seung-Wook
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.33 no.1
    • /
    • pp.78-84
    • /
    • 2005
  • In the chemical laser system with a radial expansion nozzle array, the laser beam generation is achieved by mixing F atom from supersonic nozzle and $D_{2}$ molecule from holes of round-bended supply line. Based on that the fuel injection angle with main stream has a great influence of performance on supersonic combustor, the effects of $D_{2}$ injection angles with the main F flow on mixing enhancement are numerically investigated. The results are discussed by comparison with three cases of $D_{2}$ injection angles; $10^{o}$, $20^{o}$ and $40^{o}$ with the main flow direction. Major results reveal that as the $D_{2}$ injection angle increases, the maximum small signal gains and the static pressure in the laser cavity become higher. Consequently, the $D_{2}$ injection angle between $20^{o}$ and $40^{o}$ is recommended as an optimized geometric parameter in consideration of both of high gains and low cavity pressure.

Effects of Temperature and Mass Flux on Deuterium Fluoride Chemical Laser Performance (온도와 질량유속이 불화중수소 화학 레이저 성능에 미치는 영향)

  • Park Byung-Suh;Lee Jung-Hwan
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.7 no.4 s.19
    • /
    • pp.100-106
    • /
    • 2004
  • The effects of adiabatic flame temperature and mass flux on deuterium fluoride(DF) chemical laser performance were investigated. The power flux and specific power, which are important parameters containing the information of scaling effects of laser device magnitude, and chemical efficiency were selected as a judging parameter of DF laser performance. For the specific power, it was decreased by the increase of power flux of DF laser. Higher the adiabatic flame temperature of atomic fluorine generator, higher the chemical efficiency of DF laser was changed. It seems that the mass flux effect on the chemical efficiency is not remarkable.

Output characteristics of a continuous wave deuterium fluoride chemical laser (연속발진 불화중수소 화학 레이저 출력특성)

  • 이정환;박병서;김재기
    • Korean Journal of Optics and Photonics
    • /
    • v.13 no.1
    • /
    • pp.65-69
    • /
    • 2002
  • A continuous wave deuterium fluoride (DF) chemical laser was designed and manufactured, and we have achieved DF laser beam generation with the maximum output power of 101 W. The gain medium is vibration-rotationally excited DF molecules produced by F+D$_2$ cold reaction through supersonic diffusion mixing in an optical cavity. F atoms are produced in a combustor by F$_2$+ H$_2$ reaction and injected into the cavity through a supersonic nozzle. The optimal chemical efficiency was measured to be 5.12% and specific power to be 96.5 J/g.

Output Characteristics of CW DF Laser (연속발진 불화중수소(DF) 레이저 출력특성)

  • 김재기
    • Proceedings of the Optical Society of Korea Conference
    • /
    • 2003.07a
    • /
    • pp.8-9
    • /
    • 2003
  • 본 연구에서는 연속발진 출력을 얻기 위해서 일차적으로 수소와 불소를 연소시켜 발생된 열에너지를 이용하여 불소분자($F_2$)를 원자상태의 불소(F)로 분리하고, 이 불소원자(F)를 초음속 노즐을 통해서 흐르게 한 후 중수소(D$_2$)와 화학 반응시켜 활성매질인 들뜬상태의 중수소분자(D$F_{*}$ )를 얻는다. 발진된 레이저 최대 출력 값은 약 11.5㎾이며, 발진라인은 10개로 최대 세기를 갖는 라인은 Pl(10)-3.752$\mu\textrm{m}$이다. 또한 최적의 유량조건에서 얻은 화학 효율은 약 16 %, specific power는 약 188J/g이다. (중략)

  • PDF

Effects of Base on Population Inversion in the DF Chemical Laser Cavity (불화중수소 화학레이저 공동 내에서의 분포역전에 대한 기저부의 영향)

  • 박준성;백승욱
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2003.05a
    • /
    • pp.83-86
    • /
    • 2003
  • The chemical laser system makes use of a diffusion type chemical reaction, so a fuel is separated from an oxidant by some gap, which is base in this system. In this study, the effects of base on the population inversion that is one of the most important things in the chemical laser system are numerically investigated. The results are discussed by comparison with three cases of base sizes; 0.4mm, 0.8mm and 1.6mm. Major results reveal that the range of population inversion also increases almost linearly in the transitions; DF$^{(2)}$ -DF$^{(1)}$ and DF$^{(3)}$ -DF$^{(2)}$ as the length of base becomes longer.

  • PDF