• Title/Summary/Keyword: 불투수지역

Search Result 86, Processing Time 0.022 seconds

A Study on the Urban Inundation Flooding Forecasting According to the Water Level Conditions (내수위 조건에 따른 도시내수침수 예보에 관한 연구)

  • Choo, Tai-ho;Choo, Yean-moon;Jeon, Hae-seong;Gwon, Chang-heon;Lee, Jae-gyun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.4
    • /
    • pp.545-550
    • /
    • 2019
  • The frequency of natural disasters and the scale of damage are increasing due to the abnormal weather phenomenon occurring all over the world. As a result, as the hydrological aspect of the urban watershed changes, the increase in impervious area leads to serious domestic flood damage due to increased rainfall. In order to minimize the damage of life and property, domestic flooding prediction system is needed. In this study, we developed a flood nomogram capable of predicting flooding only by rainfall intensity and duration. This study suggests a method to set the internal water immersion alarm criterion by analyzing the characteristics of the flooding damage in the flooded area in the metropolitan area where flooding is highly possible and the risk of flooding is high. In addition, based on the manhole and the pipe, the water level was set as follows under the four conditions. 1) When manhole overflows, 2) when manhole is full, 3) when 70% of the pipe is reached, and 4) when 60% of the pipe is reached. Therefore, it can be used as a criterion and a predictive measure to cope with the pre-preparation before the flooding starts, through the rainfall that causes the flooding and the flooding damage.

Application of WEP Model to the Cheonggecheon Watershed (청계천 유역에 대한 WEP 모형의 적용)

  • Noh, Seong Jin;Kim, Hyeon Jun;Cheong, Il Moon;Jang, Cheol Hee;Kim, Dong Pil
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2004.05b
    • /
    • pp.148-152
    • /
    • 2004
  • 본 연구에서는 물순환의 재생이나 보전에 필수적인 유역 물순환의 정량화와 유역변화의 영향예측을 위해 개발된 WEP (Water and Energy Transfer Process) 모형의 국내 유역에 내한 적용성을 검토하고, 청계천 유역의 물순환 양상을 모의하였다. WEP 모형은 복잡한 토지이용이 이루어지고 있는 도시하천 유역에 내한 물순환의 정량화를 목적으로 일본의 토목연구소 (PWRI; Public Works Research Institute), 과학기술진흥사업단, Jia 박사 등에 의해 공동으로 개발되었으며 지표면 및 비포화 토양층의 물${\cdot}$열 플럭스 계산, 하도흐름의 추적계산 및 지하수 유동계산, 격자내 토지이용의 불균질성 반영 등이 가능한 물리적인 기반의 공간 분포형 모형 (Physically Based Spatially Distributed)이다. 모형을 적용한 청계천 유역 (유로연장 13.75 km, 유역 면적 $50.96km^2$)은 전체 토지이용중 도시지역이 $75.9\%$를 차지하고, 유역내 인구가 120만명에 이르는 도시유역으로 높은 불투수 면적비율, 인공계 물순환 요소의 영향 등의 도시 유역 특성이 물순환의 구조 전반에 미치는 영향에 대한 연구가 부족하였다. WEP 모형 적용 결과, 모의 기간 동안의 하천 유출량은 실측치에 근사한 값을 나타내었으며 유역의 물순환 양상을 모의할 수 있었다. 청계천 유역은 전형적인 도시 유역의 특성을 보여주었는데, 강우시의 직접유출이 크고, 강우의 유출에 대한 반응이 빠르며, 증발산의 경우는 산림지역보다 도시지역이 상대적으로 적은 것으로 분석되었다. 이번 연구를 통하여 WEP 모형이 유역 물순환 해석에 적절한 모형임을 확인할 수 있었으면, 향후 청계천 유역의 물리적 특성에 대한 매개변수와 인공계 물순환 자료의 보완을 통해 보다 향상된 모의가 가능할 것으로 판단된다. 하였던 Cd과 Mg이 Ca 및 Ca과 vitamin D의 동시(同時) 급여(給與)로 감소(減少)하였고 Cu는 전체적(金體的)으로 변화(變化)가 없었으며 Zn은 Cd 급여(給與)로 감소(減少)하였으나 Ca과 vitamin D의 급여(給與)에 의하여 증가(增加)하였고 Ca은 Ca과 viamin D의 급여(給輿)로 유의(有意)하게 증가(增加)하였다. 신장(腎臟)중의 무기질(無機質) 함량(含量)은 Cd급여(給輿)로 Cu, Mg은 감소(滅少)하였으나 Ca, Zn은 변화(變化)가 없었고 Ca 및 Ca과 Vitamin D의 급여(給與)로 Cd, CU, Zn은 증가(增加)하였다.ce area)는 수술 전100.8$\pm$25.6 mm/$m^{2}$에서 79.3$\pm$ 15.8 mm/$m^{2}$로 감소한 소견을 보였다. 승모판 성형술은 전 승모판엽 탈출증이 있는 두 환아에서 동시에 시행하였다. 수술 후 1년 내 시행한 심초음파에서 모든 환아에서 단지 경등도 이하의 승모판 폐쇄 부전 소견을 보였다. 수술 후 조기 사망은 없었으며, 합병증으로는 유미흉이 한 명에서 있었다. 술 후 10개월째 허혈성 확장성 심근증이 호전되지 않아 Dor 술식을 시행한 후 사망한 예를 제외한 나머지 6명은 특이 증상 없이 정상 생활 중이다 결론: 좌관상동맥 페동맥이상 기시증은 드물기는 하나, 영유아기에 심근경색 및 허혈성 심근증 또는 선천성 승모판 폐쇄 부전등을 초래하는 심각한 선천성 심질환이다. 그러나 진단 즉시 직접 좌관상동맥-대동맥 이식술로 수술적 교정을 해줌으로써 좋은 성적을 기대할 수 있음을 보여주었다.특히 교사들이 중요하게 인식하는 해방적 행동에 대한 목표를 강조하여 적용할 필요가 있음을 시사하고 있다.교하여 유의한 차이가 관찰되지 않았다. 또한 HSP 환자군에서도 $IL1RN^{*}2$ allele 빈도와 carriage

  • PDF

A Study on the Use of GIS-based Time Series Spatial Data for Streamflow Depletion Assessment (하천 건천화 평가를 위한 GIS 기반의 시계열 공간자료 활용에 관한 연구)

  • YOO, Jae-Hyun;KIM, Kye-Hyun;PARK, Yong-Gil;LEE, Gi-Hun;KIM, Seong-Joon;JUNG, Chung-Gil
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.21 no.4
    • /
    • pp.50-63
    • /
    • 2018
  • The rapid urbanization had led to a distortion of natural hydrological cycle system. The change in hydrological cycle structure is causing streamflow depletion, changing the existing use tendency of water resources. To manage such phenomena, a streamflow depletion impact assessment technology to forecast depletion is required. For performing such technology, it is indispensable to build GIS-based spatial data as fundamental data, but there is a shortage of related research. Therefore, this study was conducted to use the use of GIS-based time series spatial data for streamflow depletion assessment. For this study, GIS data over decades of changes on a national scale were constructed, targeting 6 streamflow depletion impact factors (weather, soil depth, forest density, road network, groundwater usage and landuse) and the data were used as the basic data for the operation of continuous hydrologic model. Focusing on these impact factors, the causes for streamflow depletion were analyzed depending on time series. Then, using distributed continuous hydrologic model based DrySAT, annual runoff of each streamflow depletion impact factor was measured and depletion assessment was conducted. As a result, the default value of annual runoff was measured at 977.9mm under the given weather condition without considering other factors. When considering the decrease in soil depth, the increase in forest density, road development, and groundwater usage, along with the change in land use and development, and annual runoff were measured at 1,003.5mm, 942.1mm, 961.9mm, 915.5mm, and 1003.7mm, respectively. The results showed that the major causes of the streaflow depletion were lowered soil depth to decrease the infiltration volume and surface runoff thereby decreasing streamflow; the increased forest density to decrease surface runoff; the increased road network to decrease the sub-surface flow; the increased groundwater use from undiscriminated development to decrease the baseflow; increased impervious areas to increase surface runoff. Also, each standard watershed depending on the grade of depletion was indicated, based on the definition of streamflow depletion and the range of grade. Considering the weather, the decrease in soil depth, the increase in forest density, road development, and groundwater usage, and the change in land use and development, the grade of depletion were 2.1, 2.2, 2.5, 2.3, 2.8, 2.2, respectively. Among the five streamflow depletion impact factors except rainfall condition, the change in groundwater usage showed the biggest influence on depletion, followed by the change in forest density, road construction, land use, and soil depth. In conclusion, it is anticipated that a national streamflow depletion assessment system to be develop in the future would provide customized depletion management and prevention plans based on the system assessment results regarding future data changes of the six streamflow depletion impact factors and the prospect of depletion progress.

Calculation of future rainfall scenarios to consider the impact of climate change in Seoul City's hydraulic facility design standards (서울시 수리시설 설계기준의 기후변화 영향 고려를 위한 미래강우시나리오 산정)

  • Yoon, Sun-Kwon;Lee, Taesam;Seong, Kiyoung;Ahn, Yujin
    • Journal of Korea Water Resources Association
    • /
    • v.54 no.6
    • /
    • pp.419-431
    • /
    • 2021
  • In Seoul, it has been confirmed that the duration of rainfall is shortened and the frequency and intensity of heavy rains are increasing with a changing climate. In addition, due to high population density and urbanization in most areas, floods frequently occur in flood-prone areas for the increase in impermeable areas. Furthermore, the Seoul City is pursuing various projects such as structural and non-structural measures to resolve flood-prone areas. A disaster prevention performance target was set in consideration of the climate change impact of future precipitation, and this study conducted to reduce the overall flood damage in Seoul for the long-term. In this study, 29 GCMs with RCP4.5 and RCP8.5 scenarios were used for spatial and temporal disaggregation, and we also considered for 3 research periods, which is short-term (2006-2040, P1), mid-term (2041-2070, P2), and long-term (2071-2100, P3), respectively. For spatial downscaling, daily data of GCM was processed through Quantile Mapping based on the rainfall of the Seoul station managed by the Korea Meteorological Administration and for temporal downscaling, daily data were downscaled to hourly data through k-nearest neighbor resampling and nonparametric temporal detailing techniques using genetic algorithms. Through temporal downscaling, 100 detailed scenarios were calculated for each GCM scenario, and the IDF curve was calculated based on a total of 2,900 detailed scenarios, and by averaging this, the change in the future extreme rainfall was calculated. As a result, it was confirmed that the probability of rainfall for a duration of 100 years and a duration of 1 hour increased by 8 to 16% in the RCP4.5 scenario, and increased by 7 to 26% in the RCP8.5 scenario. Based on the results of this study, the amount of rainfall designed to prepare for future climate change in Seoul was estimated and if can be used to establish purpose-wise water related disaster prevention policies.

Studies on Deacidification of Citrus Fruit and Juice for Juice Products by Heating Treatment and Electrodialysis (열처리 및 전기투석에 의한 초기수확 밀감의 탈산에 관한 연구)

  • Ko Won-Joon;Yang Min-Ho;Kang Yeung-Joo
    • Food Science and Preservation
    • /
    • v.13 no.2
    • /
    • pp.144-153
    • /
    • 2006
  • The effects on deacidification of citrus fruits produced at early harvesting season for juice products were examined by heating treatment of raw fruits and electrodialysis of juice. Weight and total acidities were decreased by heating treatment for 40 hr at $25^{\circ}C,\;30^{\circ}C,\;35^{\circ}C\;and\;40^{\circ}C$, but $^{\circ}Brix$ and pH increased Sugar to acid ratio also increased. Total acidities were decreased from 1.25 (Oct30, 2004), 1.24 (Nov.5, 2004), 0.99 (Nov.13, 2004) and 0.98% (Nov.19, 2004) to 0.48 (Oct30, 2004), 0.51 (Nov.05, 2004), 0.37 (Nov.13, 2004) and 0.42% (Nov.19, 2004) by electrodialysis for 100 min respectively, and $^{\circ}Brix$ also slightly decreased, but solid to acid ratio was increased as a result. However pH and color remained almost unchanged by electodialysis. Also, free sugar contents of citrus juice little were changed, but organic acid content were decreased fairly. Narirutin and hesperidin content among flavonoids were slightly decreased by electrodialysis, but they were not significantly different. $K^+,\;PO_4^{2-},\;SO_4^{2-}\;and\;Cl^-$ content were decreased by electrodialysis, and $K^+$ contents decreased by more than 80% However, $Na^+$ consent was increased by about 2 times. Total polyphenol contents and electron donating abilities were decreased a little by electrodialysis but nitrite scavenging abilities were little changed. By acceptability test citrus juice prepared by electrodialysis for 100 min was superior to original citrus juice.

Field Assessment of in Situ Remediation of NO3--contaminated Ground Water Using Zero-valent Iron/Bio Composite Media (영가철/바이오 복합처리제를 이용한 질산성 질소 오염 지하수의 현장 지중정화 적용성 평가)

  • Joo, Wan-Ho;Chang, Yoon-Young
    • Journal of Environmental Impact Assessment
    • /
    • v.30 no.1
    • /
    • pp.35-48
    • /
    • 2021
  • In this study, the assessment of field applicability of in-situ remediation of nitrate-contaminated groundwater located in Yesan-gun was performed. Zero-valent iron/bio composite media injected PRB (Permeable Reactive Barrier) and monitoring well were installed in the contaminated groundwater site and monitored main remediation indicators during the PRB operation. Nitrate, nitrite, ammonia, Fe ion, TOC, and turbidity were analyzed and the diversity and population of microorganism in the PRB installed site were investigated for the verification of effect of injected PRB. In the study site where is an agricultural area, a river flows from west to east that forms a river boundary and the southern area has an impermeable sector. It was found that nitrate flows into the river, which is similar as groundwater flow. Simulation result for the fate of nitrate in groundwater showed steady state of nitrate arrived after 3~5 years passed. However, it is just to consider current conditions with no additional input of contaminant source, if additional input of contaminant source occurs contamination dispersion and time for steady state are expected to be increased. The monitoring results showed that Fe ion, TOC and turbidity in groundwater were not clearly changed in concentration after PRB installation, which indicates adaptability of the injected PRB for remediation of groundwater with no additional harmful effect to water quality. The concentration of nitrate maintained less than 5mg/L until 42 days after PRB installation and recovered its initial concentration after 84 days passed and showed termination of reactivity of injected zero-valent iron/bio composite media for removal nitrate. Nitrite and ammonia ions found after installation of PRB indicates reductive removal of nitrate. And the outstanding increase of microorganism diversity and population of Betaproteobacteria Class which includes denitrification microorganism explains biologically reductive removal of nitrate in injected PRB.