• Title/Summary/Keyword: 불투수면

Search Result 118, Processing Time 0.03 seconds

Cost-effective assessment of filter media for treating stormwater runoff in LID facilities (비용 효율적 강우유출수 처리를 위한 LID시설의 여재 평가)

  • Lee, Soyoung;Choi, Jiyeon;Hong, Jungsun;Choi, Hyeseon;Kim, Lee-Hyung
    • Journal of Wetlands Research
    • /
    • v.18 no.2
    • /
    • pp.194-200
    • /
    • 2016
  • The impervious surface rate increased by urbanization causes various problems on the environment such as water cycle distortion, heat island effect, and non-point pollutant discharges. The Low Impact Development (LID) techniques are significantly considered as an important tool for stormwater management in urban areas and development projects. The main mechanisms of LID technologies are hydrological and environmental pollution reduction among soils, media, microorganisms, and plants. Especially, the media provides important functions on permeability and retention rate of stormwater runoff in LID facilities. Therefore, this research was performed to assess the pollutant removal efficiency for different types of media such as zeolite, wood chip, bottom ash, and bio-ceramic. All media show high pollutant removal efficiency of more than 60% for particulate materials and heavy metals. Double layered media is more effective in reducing heavy metals by providing diverse sizes of micro-pores and macro-pores compared to the single layered media. The results recommend the use of different sizes of media application is more cost-effective in LID than a single size of media. Furthermore, soluble proportion of total heavy metal in the stormwater is an important component in proper media selection and arrangement.

Characteristics and Fate of Stormwater Runoff Pollutants in Constructed Wetlands (도시지역에 적용가능한 인공습지에서의 강우유출수 함유 오염물질의 거동과 특성)

  • Alihan, Jawara Christian;Maniquiz-Redillas, Marla;Choi, Jiyeon;Flores, Precious Eureka;Kim, Lee-Hyung
    • Journal of Wetlands Research
    • /
    • v.19 no.1
    • /
    • pp.37-44
    • /
    • 2017
  • Nonpoint source (NPS) pollution continues to degrade the water quality. NPS pollutants signals high concerns against a sustainable environment. Low impact development (LID) is the leading management practice which regulates and treats stormwater runoff especially in highly impervious urban areas. Constructed wetlands are known to have efficient removal capability of NPS pollutants. Likewise, these LID facilities were intended to maintain the predeveloped hydrologic regime through series of mechanisms such as particle settling, filtration, plant uptake, and etc. In this study, the objective was to investigate the characteristics, fate and treatment performance of the two in-campus constructed wetlands (SW1 and SW2) which were installed adjacent to impervious roads and parking lots to treat stormwater runoff. A total of 42 storm events were monitored starting from July 2010 until November 2015. Manual grab sampling was utilized at the inlet and outlet units of each LID facilities. Based on the results, the wetlands were found to be effective in reducing 37% and 41% of the total runoff volume and peak flows, respectively. Aside from this, outflow EMCs were generally lower than the inflow EMCs in most events suggesting that the two wetlands improved the water quality of stormwater runoff. The average removal efficiency of pollutants in facilities were 63~79% in TSS, 38~54% in TN, 54% in TP and 32%~81% in metals. The results of this study recommend the use of constructed wetlands as efficient treatment facility for urban areas for its satisfactory performance in runoff and pollutant reduction.

A study of Spatial Multi-Criteria Decision Making for optimal flood defense measures considering regional characteristic (지역특성을 고려한 홍수방어대안 제시를 위한 공간 다기준의사결정 기법 적용 방안 연구)

  • Lee, Eunkyung;Ji, Jungwon;Yi, Jaeeung
    • Journal of Korea Water Resources Association
    • /
    • v.51 no.4
    • /
    • pp.301-311
    • /
    • 2018
  • Recently, the flood inundation caused by heavy rainfall in urban area is increasing due to global warming. The variability of climate change is described in the IPCC 5th report (2014). The precipitation pattern and hydrological system is varied by climate change. Since the heavy rainfall surpassed the design capacity of the pipeline, it caused great damage in metropolitan cities such as Seoul and Busan. Inundation in urban area is primarily caused by insufficient sewer capacity and surplus overflow of river. Inundation in urban area with concentrated population is more dangerous than rural and mountains areas, because it is accompanied by human casualties as well as socio-economic damage to recover destruction of roads, brides and underground spaces. In addition, various factors such as an increase in impervious area, a short time of concentration to outlet, and a shortage of sewer capacity's lack increase flooding damage. In this study, flood inundation analysis was conducted for vulnerable areas using XP-SWMM. Also, three structural flood prevention measures such as drainage pipeline construction, detention reservoir construction, and flood pumping station construction are applied as flood damage prevention alternatives. The flood data for each alternative were extracted by dividing the basin by grid. The Spatial Compromise Programming are applied using flood assessment criteria, such as maximum inundation depth, inundation time, and construction cost. The purpose of this study is to reflect the preference of alternatives according to geographical condition even in the same watershed and to select flood defense alternative considering regional characteristics.

Hydrologic and Environmental Assessment of an Infiltration Planter for Roof Runoff Use (지붕 빗물이용을 위하여 개발된 침투화분의 환경·수문학적 평가)

  • Moon, So-Yeon;Choi, Ji-Yeon;Hong, Jung-Sun;Yu, Gi-Gyung;Jeon, Je-Chan;Flores, Precious Eureka D.;Kim, Lee-Hyung
    • Journal of Wetlands Research
    • /
    • v.17 no.4
    • /
    • pp.325-331
    • /
    • 2015
  • Due to urbanization and increase in impervious area, changes in natural water circulation system have become a cause of groundwater recharge reduction, streamflow depletion and other hydrological problems. Therefore, this study developed the infiltration planter techniques applied in an LID facility treating roof stormwater runoff such as, performance of small decentralized retention and infiltration through the reproduction of natural water circulation system and use of landscape for cleaning water. Assessment of an infiltration planter was performed through rainfall monitoring to analyze the water balance and pollutant removal efficiency. Hydrologic assessment of an infiltration planter, showed a delay in time of effluent for roof runoff for about 3 hours and on average, 79% of facilities had a runoff reduction through retention and infiltration. Based on the analysis, pollutant removal efficiency generated in the catchment area showed an average of 97% for the particulate matter, 94% for the organic matter and 86-96% and 92-93% for the nutrients and heavy metals were treated, respectively. Comparative results with other LID facilities were made. For this study, facilities compared the SA/CA to high pollutant removal efficiency for the determination to of the effectiveness of the facility when applied in an urban area.

The Effect of Decentralized Rainwater Tank System on the Reduction of Peak Runoff - A Case Study at M Village - (빗물저류조의 분산배치에 따른 첨두유출 저감효과 분석 - M 마을 사례 -)

  • Han, Moo-Young;Kum, So-Yoon;Mun, Jung-Soo;Kwak, Dong-Geun
    • Journal of Korea Water Resources Association
    • /
    • v.45 no.1
    • /
    • pp.65-73
    • /
    • 2012
  • Recently climate change and increase of surface runoff caused the urban flooding. Traditional way of dealing with urban flooding has been to increase the sewer capacity or construction of pumping stations, however, it is practically almost impossible because of time, money and traffic problems. Multipurpose DRMS (Decentralized Rainwater Management System) is a new paradigm proposed and recommended by NEMA (National Emergency Management Agency) for both flood control and water conservation. Suwon City has already enacted the ordinance on sound water cycle management by DRMS. In this study, a flood prone area in Suwon is selected and analysis of DRMS has been made using XP-SWMM for different scenarios of RT installation with same total rainwater tank volume and location. Installing one rainwater tank of 3,000$m^3$ can reduce the peak flow rate by 15.5%. Installing six rainwater tanks of 500$m^3$ volume in the area can reduce the peak flow rate by 28%. Three tanks which is concentrated in the middle region can reduce peak rate more than evenly distributed tanks. The method and results found from this study can be used for the design and performance prediction of DRMS at a flood prone area by supplementing the existing sewer system without increase of the sewer capacity.

Development of Experimental System for Green Roof System (옥상녹화 효율성 검증실험장비 개발)

  • Park, JaeRock;Kim, SaeBom;Cheon, JongHyeon;Kim, ByungSung;Shin, HyunSuk
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2017.05a
    • /
    • pp.495-495
    • /
    • 2017
  • 도시화는 불투수면의 증가를 야기 시켜 물순환 왜곡, 다양한 오염 물질의 유입으로 인한 비점오염물질 유출, 인공 배출열의 증가로 인한 도시열섬효과 등 다양한 문제를 유발한다. 이러한 수리수문학적 및 환경생태학적 문제를 저감하기 위하여 도시지역과 같은 개발 사업에서는 수환경을 가능한 자연 상태로 복원하는 저영향개발(Low Impact Development, LID)기법이 중요한 대안으로 제시되고 있다. LID기법 중 하나인 옥상녹화는 에너지 이용을 최소한으로 한 자연 녹음의 효과적인 이용을 도모하여 환경공생도시 조성과 식물을 매개로한 자연 순환 과정을 도시구조에 도입하여 순환 시스템 재생이 가능 하도록한다. 노지녹화는 두꺼운 자연 토양을 이용하는 반면 옥상녹화는 적재하중의 제약(옥상의 적재하중 조건은 $150{\sim}180kgf/m^2$이다. 비중이 1.6~1.8인 토양을 20cm 객토한 경우, 약 $320kgf/m^2 $이상의 적재하중이 되기에 식재기반의 경량화는 중요한 사안이다.)으로 인해 용적밀도가 작은 인공경량토양 또는 개량토양을 이용하며, 토양 두께도 얇게 설정된다. 또한 토양의 두께는 식물의 크기와 종류 및 토양의 조성에 따라 다르기에 적재하중 조건을 고려한 적절한 토양과 식재 식물의 크기와 종류 결정은 중요하다. 이에 본 연구에서는 옥상녹화식생에 대한 평가와 이에 대한 시험 프로세스가 가능한 실험 장치를 개발하였다. 옥상녹화 효율성 검증실험장비는 1m*1m*0.6m 아크릴 재질의 녹화셀로 경사조절이 가능하도록 설계하여 경사변화에 따른 유출, 침투, 증발산량의 탄성도 모의 평가를 할 수 있다. 또한 4점식 형태의 로드셀을 이용하여 녹화셀에서 발생하는 증발산량을 측정하고 관측된 증발산량은 RS-232c 이상의 통신프로토콜을 사용하여 주기적인 관측치의 송수신이 가능하며 주기적 자료송수신 외에도 옥상 녹화셀의 측면에 하중 표시기를 설치하여 관측이 가능하다. 또한 저면에 바퀴설치를 통하여 이동 실험이 용이하며 현재 부산대학교 양산캠퍼스 한국 GI&LID 실증단지 연구센터 내 옥상녹화 실험장에 옥상녹화 효율성 검증 실험 장비를 설치하여 자연 혹은 인공강우를 통한 유출, 침투, 증발산량의 시험계측을 실시중이다. 이러한 옥상녹화 효율성 검증실험장비는 최대 하중 2,000kg, 측정해상도 0.02kg 이상을 허용하는 로드셀과 녹화셀을 이용하여 하중을 고려한 식생의 종류에 따른 평가가 가능하므로 최적 식재기반 단면구조 개발에 이용될 수 있을 것이다. 또한 토양 함수량 변화 측정으로 옥상녹화에 이용되는 다양한 종류의 식물의 염분에 대한 저항성과 식물의 성장능력을 평가하여 녹화공간에 따른 옥상녹화에 사용할 식생을 결정할 수 있다.

  • PDF

Evaluation of the applicability of Cockle shell and walnut shell in a bioretention facility (Bioretention 내 꼬막 및 호두껍질의 적용성 평가)

  • Jeon, Minsu;Geronimo, F.K.F.;Choi, Hyeseon;Kim, Lee-hyung
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2019.05a
    • /
    • pp.203-203
    • /
    • 2019
  • 도시화로 인한 불투수면의 증가는 물순환 왜곡, 비점오염원 발생 및 수생태계 건상성 훼손 등을 야기시키며, 이를 해결하기 위하여 다양한 LID 기법을 적용하고 있다. 일반적으로 LID 내 적용 되는 여재들은 무기성여재로 중량이 크고 미세공극의 부재로 물리화학적 및 생물학적 저감기능이 제한적이다. 따라서 본 연구에서는 중량성이 낮은 생물폐자원을 선정하여 LID 시설 적용성평가를 수행하고자 한다. 생물폐자원은 발생량, 경량성 및 용이성을 고려하여 꼬막껍질(CS)과 호두껍질(WS)을 선정하였다. 생물폐자원의 산화부식을 고려하여 무기성 여재인 화산석과 혼합하여 Bioretention 시설에 적용하였으며, 여재 혼합비율에 따라 총 3가지의 Case 로 구성하였다. 식생은 구절초와 꽃댕강나무를 식재하였으며, 여재의 물리적 특성 분석을 위하여 적용 전과 후의 SEM(Scanning Electronic Microscope)을 수행하였다. 모니터링은 도로퇴적물 100g과 물 110L를 제조하여 인공강우유출수를 이용하여 수행하였으며, $0.0003{\sim}0.007m^3/sec$의 유속으로 주입하였다. 시설의 유입 및 유출부에서 유량 측정 및 수질 시료를 채취하였으며, 채취된 시료는 수질오염공정 시험법에 준하여 입자상 물질, 유기물, 영양물질 및 중금속 등을 분석하였다. Bioretention 시설의 모니터링 결과를 이용하여 물수지 및 TSS 저감 효율을 산정하였으며. 물수지 분석결과 시설의 저류율은 Case 1(soil) > Case 3(WS+RV) > Case 2(CS+RV) 순으로 나타났다. 시설 내 공극률이 가장 낮았던 Case 1에서 저류율이 약 55%로 가장 높게 것으로 분석되었다. Case 3(WS+RV)은 Case 2(WS+RV)와 시설 내 공극률이 유사함에도 불구하고 저류율이 약 10% 높은 것으로 분석되었다. 오염물질 저감효율 분석 결과, TSS와 TP의 제거효율은 모든 Case에서 약 75% 이상으로 높게 나타났으며, COD의 경우 모래를 적용한 Case 1에 비해 생물폐자원인 꼬막껍질과 호두껍질을 적용한 Case에서 약 1.3배 이상 높게 나타났다. 호두껍질과 꼬막껍질의 SEM 분석 결과 표면에 다공성이 형성되어 있는 것으로 조사되었다. 이는 여과 및 저류기작으로 인한 물순환 효과증대와 다공성과 돌기사이로 인한 입자상의 물질 여과 및 흡착으로 인하여 오염물질의 제거효율이 증대 된 것으로 평가된다. LID시설 내 생물폐자원과 무기성여재를 적절히 배합하여 복합여재로 조성할 경우 침하현상을 방지할 뿐만 아니라 저류 및 침투기능 향상과 미생물의 서식환경을 제공하기에 물순환 회복 및 비점오염물질 저감에 기여할 것으로 평가된다.

  • PDF

Determination of Volume Porosity and Permeability of Drainage Layer in Rainwater Drainage System Using 3-D Numerical Method (3차원 수치해석기법을 이용한 우수배수시스템 배수층의 체적공극과 투수도 결정)

  • Yeom, Seong Il;Park, Sung Won;Ahn, Jungkyu
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.8
    • /
    • pp.449-455
    • /
    • 2019
  • The increase in impermeable pavement from recent urbanization has resulted in an increase in surface runoff. The surface runoff has also increased the burden of the existing drainage system. This drainage system has structural limitations in that the catchment area is reduced by the waste particles transported with the surface runoff. In addition, the efficiency of the drainage system is decreased. To overcome these limitations, a new type of drainage system with a drainage layer was developed and applied. In this study, various volume porosity and permeability of the lower drainage layer were simulated using ANSYS CFX, which is a three dimensional computational fluid dynamics program. The results showed that the outlet velocity of the 35% volume porosity was faster than that of the 20% and 50% cases, and there was no relationship between the volume porosity and drainage performance. The permeability of the drainage layer can be determined from the particle size of the material, and a simulation of five conditions showed that 2 mm sand grains are most suitable for workability and usability. This study suggests appropriate values of the volume porosity and particle size of the drainage layer. This consideration can be advantageous for reducing and preventing flood damage.

Assessment of Water Circulation and Hydro-characteristics with LID techniques in urbanized areas (도시지역에 적용된 LID 기법의 강우시 수문특성 및 물순환 평가)

  • Choi, Hyeseon;Hong, Jungsun;Jeon, Minsu;Geronimo, Franz Kevin;Kim, Leehyung
    • Journal of Wetlands Research
    • /
    • v.21 no.3
    • /
    • pp.191-198
    • /
    • 2019
  • High impervious surfaces increase the surface runoff during rainfall and reduces the underground infiltration thereby leading to water cycle distortion. The distortion of water cycle causes various urban environmental problems such as urban flooding, drought, water pollutant due to non-point pollution runoff, and water ecosystem damage. Climate change intensified seasonal biases in urban rainfall and affected urban microclimate, thereby increasing the intensity and frequency of urban floods and droughts. Low impact development(LID) technology has been applied to various purposes as a technique to reduce urban environmental problems caused by water by restoring the natural water cycle in the city. This study evaluated the contribution of hydrologic characteristics and water cycle recovery after LID application using long-term monitoring results of various LID technology applied in urban areas. Based on the results, the high retention and infiltration rate of the LID facility was found to contribute significantly to peak flow reduction and runoff delay during rainfall. The average runoff reduction effect was more than 60% at the LID facility. The surface area of the LID facility area ratio(SA/CA) was evaluated as an important factor affecting peak flow reduction and runoff delay effect.

The Application of Nature-Based Technologies for Addressing Urban Environmental Problems (도시 환경 문제를 해결하기 위한 자연 기반해법의 적용)

  • Haque, Md Tashdedul;Reyes, Nash Jett DG.;Lee, Jung-min;Guerra, Heidi B.;Jeon, Minsu;Choi, Hyeseon;Kim, Lee-Hyung
    • Journal of Wetlands Research
    • /
    • v.24 no.4
    • /
    • pp.367-376
    • /
    • 2022
  • LID technologies are capable of mitigating the negative impacts of non-point source (NPS) pollution generated in different land uses. Apart from the increase in point and non-point pollutant generation, highly developed and paved areas generally affect microclimate conditions. This study evaluated both the efficiency of Low Impact Development (LID) facilities in treating NPS pollutant loads as well as the unit pollutant loads (UPL) generated in various urban features (such as parking lots and highways). This investigation also looked at how LID technology helped to alleviate Urban Heat Island (UHI) conditions. As compared to the typical unit pollutant loads in South Korea, the unit pollutant loads at Kongju National University were relatively low, because of no classes, limited vehicular transmission, and low anthropogenic activities during vacation. After receiving treatment from the LID facilities, the effluent pollutant loads were significantly decreased. The sedimentation in filtration mechanisms considerably reduced the pollutant fractions in the influent. Additionally, it was shown that LID facilities' mean surface temperatures are up to 7.2℃ lower than the nearby paved environment, demonstrating the LID systems reducing the UHI impact on an urban area.