• 제목/요약/키워드: 불연속 Kernel-Pareto 분포

검색결과 4건 처리시간 0.023초

불연속 Kernel-Pareto 분포를 이용한 일강수량 모의 기법 개발 (Development of Daily Rainfall Simulation Model Using Piecewise Kernel-Pareto Continuous Distribution)

  • 권현한;소병진
    • 대한토목학회논문집
    • /
    • 제31권3B호
    • /
    • pp.277-284
    • /
    • 2011
  • 기존 Markov Chain 모형을 통한 일강수량 모의에서 가장 큰 문제점은 극치강수량을 재현하기 어렵다는 점이다. 이러한 문제점으로 인해 수자원계획을 수립하는데 있어서 불확실성을 가중시키고 있다. 특히 일강수량 모의기법을 통해서 추정되는 빈도강수량의 과소추정으로 인해 수공구조물 설계 시에 신뢰성을 확보하는데 문제점이 있다. 이러한 점에서 본 연구에서는 기존 Markov Chain 모형에서 일강수량에 평균적인 특성과 극치특성을 동시에 재현할 수 있도록 불연속 Kernel-Pareto Distribution 기반에 일강수량모의기법을 개발하였다. 한강유역의 3개 강수지점에 대해서 기존 Markov Chain 모형과 본 연구에서 제안한 방법을 적용한 결과 여름의 일강수량 모의 시 1차모멘트인 평균과 2-3차 모멘트 모두 효과적으로 재현하지 못하는 문제점이 나타났다. 그러나 본 연구에서 제안한 불연속 Kernel-Pareto 분포형 기반 Markov Chain 모형은 여름의 일강수량 모의 시 강수계열의 평균적인 특성뿐만 아니라 표준편차 및 왜곡도의 경우에도 관측치의 통계특성을 매우 효과적으로 재현하는 것으로 나타났다. 본 연구에서 제시한 방법론은 전체적으로 기존 Markov Chain 모형에 비해 극치강수량을 재현하는데 유리한 기법으로 판단된다. 또한 극치강수량을 일반강수량으로부터 분리하여 모의함으로서 평균 및 중간값 등 낮은 차수에 모멘트 등 일강수량에 전체적인 분포특성을 더욱 효과적으로 모의할 수 장점을 확인할 수 있었다.

불연속 분포를 이용한 다지점 강수모의발생 기법 개발 (A Development of Multi-site Rainfall Simulation Model Using Piecewise Generalize Pareto Distribution)

  • 소병진;권현한
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2012년도 학술발표회
    • /
    • pp.123-123
    • /
    • 2012
  • 일강수량은 수공구조물 설계 및 수자원계획을 수립하기 위한 입력 자료로 이용된다. 일반적으로 수자원계획은 장기적인 목적을 가지고 수행되어지며, 장기간의 일강수량 자료를 필요로 한다. 하지만 장기간의 일강수량 자료의 획득의 어려움으로 단기간의 일강수량자료를 이용하여 모의한 장기간 강수자료를 이용하게 된다. 이처럼 수자원계획의 수립에 있어서 일강수량 모의기법의 성능은 수자원계획의 신뢰성 및 결과에 큰 영향을 준다. 일강수량 모의기법은 국내외적으로 매우 활발하게 이루어지고 있으며, 수자원계획 및 수공구조물 설계 외에도 매우 다양한 목적으로 활용되어 지고 있다. 일강수량을 모의기법 중 강수계열의 단기간의 기억(memory)을 활용한 Markov Chain 모형이 가장 일반적이지만, 기존 Markov Chain 모형을 통한 일강수량 모의는 극치강수량을 재현하기 어렵다는 문제점이 있다. 또한, 일강수량 모의 기법의 목적인 수자원계획 및 수공구조물 설계 등의 입력자료로 활용되어지기 위해서는 모의 결과가 유역내 지점별 공간 상관성을 재현함으로써 모형의 우수성과 자료결과의 신뢰성을 확보할 수 있어야 하겠다. 이러한 점에서 본 연구에서는 내삽에서 우수한 재현능력을 갖는 핵 밀도함수와 극치강수량 재현에 유리한 GPD분포의 특징을 함께 고려할 수 있는 불연속 Kernel-Pareto Distribution 기반에 공간상관성 재현 알고리즘을 결합한 일강수량모의기법을 개발하였다. 한강유역의 18개 강수지점에 대해서 기존 Gamma분포를 사용한 Markov Chain 모형과 본 연구에서 제안한 방법을 적용하여 모형을 평가해 보고자 한다. Gamma 분포기반 Markov Chain 모형의 경우 일강수량 모의 시 1차모멘트인 평균과 2-3차 모멘트 모두 효과적으로 재현하지 못하는 문제점이 나타났다. 그러나 본 연구에서 적용한 다지점 불연속 Kernel-Pareto 분포 모형은 강수계열의 평균적인 특성뿐만 아니라 표준편차 및 왜곡도의 경우에도 관측치의 통계특성을 매우 효과적으로 재현하며, 100년빈도 강수량 모의결과 기존 모의모형의 문제점을 보완할 수 있는 개선된 결과를 보여주었다. 본 연구에서 제시한 방법론은 유역내의 공간상관성을 재현하며, 평균 및 중간값 등 낮은 차수의 모멘트 등 일강수량 분포특성을 더욱 효과적으로 모의할 수 장점을 확인하였다.

  • PDF

불연속 Pareto 분포를 활용한 강수 모의발생 모델 개발 (A Development of Rainfall Simulation Model Using Piecewise Generalize Pareto Distribution)

  • 권현한;소병진;김태웅
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2011년도 학술발표회
    • /
    • pp.88-88
    • /
    • 2011
  • 수자원에서 일강수량 모의기법은 다양한 목적으로 활용되고 있으며 기본적으로 수공구조물 설계 및 수자원계획을 수립하기 위한 입력 자료로서 이용된다. 수자원계획은 장기적인 목적을 가지고 수행되는 것이 일반적이며 우리가 목표로 하는 장기간의 일강수량자료의 획득이 어렵기 때문에 단기간의 일강수량자료를 장기 모의하여 이용하게 된다. 일강수량을 모의하는데 있어서 강수계열의 단기간의 기억(memory)을 활용한 Markov Chain 모형이 가장 일반적이며, 기존 Markov Chain 모형을 통한 일강수량 모의에서 발생하는 가장 큰 문제점은 극치강수량을 재현하기 어렵다는 점이다. 이러한 문제점으로 인해 수자원 계획을 수립하는데 있어서 불확실성을 가중시키고 있다. 특히 일강수량 모의기법을 통해서 추정되는 빈도강수량의 과소추정으로 인해 수공구조물 설계 시에 신뢰성을 확보하는 데 문제점이 있다. 이러한 점에서 본 연구에서는 기존 Markov Chain 모형에서 일강수량에 평균적인 특성과 극치특성을 동시에 재현할 수 있도록 불연속 Kernel-Pareto Distribution 기반에 일강수량모의기법을 개발하였다. 한강유역의 3개 강수지점에 대해서 기존 Markov Chain 모형과 본 연구에서 제안한 방법을 적용한 결과 여름의 일강수량 모의 시 1차모멘트인 평균과 2-3차 모멘트 모두 효과적으로 재현하지 못하는 문제점이 나타났다. 그러나 본 연구에서 제안한 불연속 Kernel-Pareto 분포형 기반 Markov Chain 모형은 여름의 일강수량 모의 시 강수계열의 평균적인 특성뿐만 아니라 표준편차 및 왜곡도의 경우에도 관측치의 통계특성을 매우 효과적으로 재현하는 것으로 나타났다. 본 연구에서 제시한 방법론은 전체적으로 기존 Markov Chain 모형에 비해 극치강수량을 재현하는데 유리한 기법으로 판단되며, 또한 극치강수량을 일반강수량으로부터 분리하여 모의함으로서 평균 및 중간값 등 낮은 차수에 모멘트 등 일강수량에 전체적인 분포특성을 더욱 효과적으로 모의할 수 장점을 확인하였다.

  • PDF

강우모의기법과 강우-유출 모형을 연계한 댐 유입량 자료 생성기법 개발 (Development of dam inflow simulation technique coupled with rainfall simulation and rainfall-runoff model)

  • 김태정;소병진;유민석;권현한
    • 한국수자원학회논문집
    • /
    • 제49권4호
    • /
    • pp.315-325
    • /
    • 2016
  • 일반적으로 하천의 유량은 댐과 같은 수공구조물에 의해 조정된 유량으로 수자원계획을 위해서 필요한 자연유량과는 차이가 크다. 수자원계획을 수립함에 있어 자연 유입량 정보는 댐 운영과 수문분석을 위한 필수적인 정보이다. 본 연구에서는 댐 유역 일유입량 모의기법을 위한 통합 모형을 개발하였다. 첫째, 장기 강우-유출 모형의 입력강우자료로 사용하기 위하여 평균 및 중앙값과 같은 통계적 모멘트를 효과적으로 재현하고 극치 강우량 재현에 유리한 불연속 Kernel-Pareto 확률분포 기반의 강우모의기법을 통하여 강우모의를 수행하였다. 둘째, SAC-SMA 장기 강우-유출 모형의 매개변수를 Bayesian MCMC 기법을 통하여 최적화하여 산정된 매개변수의 사후분포를 활용하여 댐 유입량 시나리오 도출하였다. 댐 유역을 대상으로 개발된 모형을 평가한 결과 자연유량과 통계적으로 유사한 특성을 가지는 시나리오를 생성할 수 있었으며, 물수지 분석 등과 같은 수자원계획을 위한 시나리오로 활용이 가능할 것으로 판단된다.