• Title/Summary/Keyword: 불균형 분류 문제

Search Result 113, Processing Time 0.046 seconds

Adversarial Training Method for Handling Class Imbalance Problems in Dialog Datasets (대화 데이터셋의 클래스 불균형 문제 보정을 위한 적대적 학습 기법)

  • Cho, Su-Phil;Choi, Yong Suk
    • Annual Conference on Human and Language Technology
    • /
    • 2019.10a
    • /
    • pp.434-439
    • /
    • 2019
  • 딥러닝 기반 분류 모델에 있어 데이터의 클래스 불균형 문제는 소수 클래스의 분류 성능을 크게 저하시킨다. 본 논문에서는 앞서 언급한 클래스 불균형 문제를 보완하기 위한 방안으로 적대적 학습 기법을 제안한다. 적대적 학습 기법의 성능 향상 여부를 확인하기 위해 총 4종의 딥러닝 기반 분류 모델을 정의하였으며, 해당 모델 간 분류 성능을 비교하였다. 실험 결과, 대화 데이터셋을 이용한 모델 학습 시 적대적 학습 기법을 적용할 경우 다수 클래스의 분류 성능은 유지하면서 동시에 소수 클래스의 분류 성능을 크게 향상시킬 수 있음을 확인하였다.

  • PDF

Learning Behavior Analysis of Bayesian Algorithm Under Class Imbalance Problems (클래스 불균형 문제에서 베이지안 알고리즘의 학습 행위 분석)

  • Hwang, Doo-Sung
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.45 no.6
    • /
    • pp.179-186
    • /
    • 2008
  • In this paper we analyse the effects of Bayesian algorithm in teaming class imbalance problems and compare the performance evaluation methods. The teaming performance of the Bayesian algorithm is evaluated over the class imbalance problems generated by priori data distribution, imbalance data rate and discrimination complexity. The experimental results are calculated by the AUC(Area Under the Curve) values of both ROC(Receiver Operator Characteristic) and PR(Precision-Recall) evaluation measures and compared according to imbalance data rate and discrimination complexity. In comparison and analysis, the Bayesian algorithm suffers from the imbalance rate, as the same result in the reported researches, and the data overlapping caused by discrimination complexity is the another factor that hampers the learning performance. As the discrimination complexity and class imbalance rate of the problems increase, the learning performance of the AUC of a PR measure is much more variant than that of the AUC of a ROC measure. But the performances of both measures are similar with the low discrimination complexity and class imbalance rate of the problems. The experimental results show 4hat the AUC of a PR measure is more proper in evaluating the learning of class imbalance problem and furthermore gets the benefit in designing the optimal learning model considering a misclassification cost.

Ensemble Learning for Solving Data Imbalance in Bankruptcy Prediction (기업부실 예측 데이터의 불균형 문제 해결을 위한 앙상블 학습)

  • Kim, Myoung-Jong
    • Journal of Intelligence and Information Systems
    • /
    • v.15 no.3
    • /
    • pp.1-15
    • /
    • 2009
  • In a classification problem, data imbalance occurs when the number of instances in one class greatly outnumbers the number of instances in the other class. Such data sets often cause a default classifier to be built due to skewed boundary and thus the reduction in the classification accuracy of such a classifier. This paper proposes a Geometric Mean-based Boosting (GM-Boost) to resolve the problem of data imbalance. Since GM-Boost introduces the notion of geometric mean, it can perform learning process considering both majority and minority sides, and reinforce the learning on misclassified data. An empirical study with bankruptcy prediction on Korea companies shows that GM-Boost has the higher classification accuracy than previous methods including Under-sampling, Over-Sampling, and AdaBoost, used in imbalanced data and robust learning performance regardless of the degree of data imbalance.

  • PDF

Emotion and Speech Act classification in Dialogue using Multitask Learning (대화에서 멀티태스크 학습을 이용한 감정 및 화행 분류)

  • Shin, Chang-Uk;Cha, Jeong-Won
    • Annual Conference on Human and Language Technology
    • /
    • 2018.10a
    • /
    • pp.532-536
    • /
    • 2018
  • 심층인공신경망을 이용한 대화 모델링 연구가 활발하게 진행되고 있다. 본 논문에서는 대화에서 발화의 감정과 화행을 분류하기 위해 멀티태스크(multitask) 학습을 이용한 End-to-End 시스템을 제안한다. 우리는 감정과 화행을 동시에 분류하는 시스템을 개발하기 위해 멀티태스크 학습을 수행한다. 또한 불균형 범주 분류를 위해 계단식분류(cascaded classification) 구조를 사용하였다. 일상대화 데이터셋을 사용하여 실험을 수행하였고 macro average precision으로 성능을 측정하여 감정 분류 60.43%, 화행 분류 74.29%를 각각 달성하였다. 이는 baseline 모델 대비 각각 29.00%, 1.54% 향상된 성능이다. 본 논문에서는 제안하는 구조를 이용하여, 발화의 감정 및 화행 분류가 End-to-End 방식으로 모델링 가능함을 보였다. 그리고, 두 분류 문제를 하나의 구조로 적절히 학습하기 위한 방법과 분류 문제에서의 범주 불균형 문제를 해결하기 위한 분류 방법을 제시하였다.

  • PDF

Kernel Perceptron Boosting for Effective Learning of Imbalanced Data (불균형 데이터의 효과적 학습을 위한 커널 퍼셉트론 부스팅 기법)

  • 오장민;장병탁
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2001.04b
    • /
    • pp.304-306
    • /
    • 2001
  • 많은 실세계의 문제에서 일반적인 패턴 분류 알고리즘들은 데이터의 불균형 문제에 어려움을 겪는다. 각각의 학습 예제에 균등한 중요도를 부여하는 기존의 기법들은 문제의 특징을 제대로 파악하지 못하는 경우가 많다. 본 논문에서는 불균형 데이터 문제를 해결하기 위해 퍼셉트론에 기반한 부스팅 기법을 제안한다. 부스팅 기법은 학습을 어렵게 하는 데이터에 집중하여 앙상블 머신을 구축하는 기법이다. 부스팅 기법에서는 약학습기를 필요로 하는데 기존 퍼셉트론의 경우 문제에 따라 약학습기(weak learner)의 조건을 만족시키지 못하는 경우가 있을 수 있다. 이에 커널을 도입한 커널 퍼셉트론을 사용하여 학습기의 표현 능력을 높였다. Reuters-21578 문서 집합을 대상으로 한 문서 여과 문제에서 부스팅 기법은 다층신경망이나 나이브 베이스 분류기보다 우수한 성능을 보였으며, 인공 데이터 실험을 통하여 부스팅의 샘플링 경향을 분석하였다.

  • PDF

Comparison of Loss Function for Multi-Class Classification of Collision Events in Imbalanced Black-Box Video Data (불균형 블랙박스 동영상 데이터에서 충돌 상황의 다중 분류를 위한 손실 함수 비교)

  • Euisang Lee;Seokmin Han
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.24 no.1
    • /
    • pp.49-54
    • /
    • 2024
  • Data imbalance is a common issue encountered in classification problems, stemming from a significant disparity in the number of samples between classes within the dataset. Such data imbalance typically leads to problems in classification models, including overfitting, underfitting, and misinterpretation of performance metrics. Methods to address this issue include resampling, augmentation, regularization techniques, and adjustment of loss functions. In this paper, we focus on loss function adjustment, particularly comparing the performance of various configurations of loss functions (Cross Entropy, Balanced Cross Entropy, two settings of Focal Loss: 𝛼 = 1 and 𝛼 = Balanced, Asymmetric Loss) on Multi-Class black-box video data with imbalance issues. The comparison is conducted using the I3D, and R3D_18 models.

오차항이 이분산성을 가지는 일원분류 모형에서 일반 F-검정의 유의수준에 관한 고찰

  • 김기환;이준영
    • Proceedings of the Korean Statistical Society Conference
    • /
    • 2000.11a
    • /
    • pp.165-171
    • /
    • 2000
  • 일원분류 모형에서 표준 F-검정을 하기 위해서는 오차항에 대한 등분산성을 가정한다. 그러나 실제로 이러한 가정은 지켜지기 힘들며, 이에 더불어 관찰치가 각 집단별로 일정하지 않고 불균형한 경우에는 F-검정의 유의수준이 지정된 값을 만족시키지 못하며, 따라서 검정력에 관한 분석은 의미가 없게 된다. 본 연구에서는 등분산성이 지켜지지 않고, 자료가 불균형한 경우, 현실적인 상황에서 일반적으로 사용되는 F-검정의 유의수준 유지라는 문제가 어 떤 변화를 겪게 되는지를 확인하고, 더 나아가 유의수준을 유지하기 위해서는 어떤 식의 조정이 가능한지를 살펴보았다.

  • PDF

SVM Ensemble Techniques for Class Imbalance Problem (데이터 불균형 문제에서의 SVM 앙상블 기법의 적용)

  • 강필성;이형주;조성준
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2004.10b
    • /
    • pp.706-708
    • /
    • 2004
  • 대부분의 기계학습 알고리즘은 학습 데이터에서 각각의 범주간의 비율이 동일하거나 비슷하다는 가정 하에 문제를 풀게 된다. 그러나 실제 문제에서는 그 비율이 동일하지 않으며 매우 큰 차이를 보이기도 하는데, 이는 분류 성능을 저하시키는 요인이기도 하다 따라서 본 논문에서는 이러한 데이터의 불균형 문제를 해소하는 방안으로 SVM 앙상블 기법을 적용한 샘플링을 제안하고 이를 실제 불균형 데이터에 적용함으로써 제안된 방법이 기존의 방법들에 비해 향상된 성능을 나타내는 것을 보였다.

  • PDF

A Study on Calculating Over-sampling Ratio using Classification Complexity (분류 복잡도를 활용한 오버 샘플링 비율 산출 알고리즘 개발)

  • Lee, Do-Hyeon;Kim, Kyoungok
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2020.05a
    • /
    • pp.591-594
    • /
    • 2020
  • 불균형 데이터는 범주에 따른 데이터의 분포가 불균형한 데이터를 의미한다. 이런 데이터를 활용해 기존 분류 알고리즘으로 분류기를 학습하면 성능이 저하되는 문제가 발생한다. 오버 샘플링은 이를 해결하기 위한 기법 중 하나로 수가 적은 범주[이하 소수 범주]에 속한 데이터 수를 임의로 증가시킨다. 기존 연구들에서는 수가 많은 범주[이하 다수 범주]에 속한 데이터 수와 동일한 크기만큼 증가시키는 경우가 많다. 이는 증가시키는 샘플의 수를 결정할 때 범주 간 데이터 수 비율만 고려한 것이다. 그런데 데이터가 동일한 수준의 불균형 정도를 갖더라도 범주별 데이터 분포에 따라서 분류 복잡도가 다르며, 경우에 따라 데이터 분포에서 존재하는 불균형 정도를 완전히 해소하지 않아도 된다. 이에 본 논문은 분류 복잡도를 활용해 데이터 셋 별 적정 오버 샘플링 비율을 산출하는 알고리즘을 제안한다.

A Deep Learning Based Over-Sampling Scheme for Imbalanced Data Classification (불균형 데이터 분류를 위한 딥러닝 기반 오버샘플링 기법)

  • Son, Min Jae;Jung, Seung Won;Hwang, Een Jun
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.8 no.7
    • /
    • pp.311-316
    • /
    • 2019
  • Classification problem is to predict the class to which an input data belongs. One of the most popular methods to do this is training a machine learning algorithm using the given dataset. In this case, the dataset should have a well-balanced class distribution for the best performance. However, when the dataset has an imbalanced class distribution, its classification performance could be very poor. To overcome this problem, we propose an over-sampling scheme that balances the number of data by using Conditional Generative Adversarial Networks (CGAN). CGAN is a generative model developed from Generative Adversarial Networks (GAN), which can learn data characteristics and generate data that is similar to real data. Therefore, CGAN can generate data of a class which has a small number of data so that the problem induced by imbalanced class distribution can be mitigated, and classification performance can be improved. Experiments using actual collected data show that the over-sampling technique using CGAN is effective and that it is superior to existing over-sampling techniques.