최근 CNN(Convolutional Neural Network)은 영상 분류, 객체 인식 등 다양한 비전 분야에서 우수한 성능을 보여주고 있으나, CNN 모델의 계산량 및 메모리가 매우 커짐에 따라 모바일 또는 IoT(lnternet of Things) 장치와 같은 저전력 환경에 적용되기에는 제한이 따른다. 따라서, CNN 모델의 임무 성능을 유지하연서 네트워크 모델을 압축하는 기법들이 연구되고 있다. 본 논문에서는 행렬 분해 기술인 저계수행렬 근사(Low-rank approximation)와 CP(Canonical Polyadic) 분해 기법을 결합하여 CNN 모델을 압축하는 기법을 제안한다. 제안하는 기법은 계층의 유형에 상관없이 하나의 행렬분해 기법만을 적용하는 기존의 기법과 달리 압축 성능을 높이기 위하여 CNN의 계층 타입에 따라 두 가지 분해 기법을 선택적으로 적용한다. 제안기법의 성능검증을 위하여 영상 분류 CNN 모델인 VGG-16, ResNet50, 그리고 MobileNetV2 모델 압축에 적용하였고, 모델의 계층 유형에 따라 두 가지의 분해 기법을 선택적으로 적용함으로써 저계수행렬 근사 기법만 적용한 경우 보다 1.5~12.1 배의 동일한 압축율에서 분류 성능이 향상됨을 확인하였다.
본 논문에서는 표준 셀 배치기 Mongrel의 성능을 개선하기 위해 사용된 다양한 기법에 관해 살펴보고 top-down방식의 계층적 분할 기법을 이용한 광역 배치(Hierarchical Global Placement)를 제안한다. 계층적 분할 기법을 이용한 광역 배치는 RBLS(Relaxation Based Local Search) 기법과 더불어 Mongrel의 성능 개선에 결정적인 역할을 하고 있으며 분할 기법으로 hMETIS(클러스터링을 이용한 다단계 분할 기법)를 사용한다. 우리는 표준 벤치마크 회로를 이용한 실험을 통해 계층적 분할 기법을 이용한 광역 배치 기법이 안정적이면서 효율적인 배치 결과를 가져옴을 보인다.
본 논문에서는 다채널 음향 신호의 음원 분리를 수행하기 위하여, 빔공간-영역에서 다채널 비음수 행렬 분해 기법을 이용하는 음원 분리 시스템을 제안한다. 비음수 행렬 분해(NMF) 기법은 음원 분리에서 최근 널리 쓰이는 알고리즘이며, 특히 최근에는 다채널 비음수 행렬 분해(MC-NMF) 기법으로 발전하여 다채널 음향 신호에 대해서 적용되고 있다. 본 논문에서 제안하는 다채널 비음수 행렬 분해 기법은 빔공간-영역에서 수행되어, 기존의 다채널 비음수 행렬 분해 기법에 비해 좋은 성능을 가진다. 제안되는 비음수 행렬 분해 기법은 SiSEC 2010의 데이터셋을 이용하여 검증되었다.
비공유 데이터베이스 클러스터는 그 구조의 특성 상 동적인 질의 패턴의 변화, 특정 데이터에 대한 질의 집중에 의한 부하 불균형 및 집중, 사용자 증가에 의한 처리량 한계 등의 문제가 발생한다. 이러한 문제를 해결하기 위해 데이터베이스 클러스터는 최근에 제안된 온-라인 확장기법을 사용하며, 이 기법은 데이터 베이스의 확장성에 의해 큰 영향을 받는다. 일반적으로 클러스터 시스템에서 사용되는 데이터 분할 기법에는 키 값의 순서대로 분할하는 라운드-로빈 분할 기법, 해쉬 함수를 이용해 데이터를 분할하는 해쉬 분할 기법, 범위에 따라 각 노드에 데이터를 분할하는 범위 분할기법, 그리고 조건식에 따라 데이터를 분할하는 조건식 분할 기법이 있다. 본 논문에서는 이 네 가지 분할 기법의 특성을 정리하고, 비공유 데이터베이스 클러스터에서 확장성에 있어서 우수한 분할 기법을 각 분할 기법의 성능평가를 통해 얻는다. 성능평가에서는 각각의 분한 기법을 평가하기 위해 확장 시 발생되는 이동 데이터의 크기, 질의처리에 대한 영향, CPU 사용률, 그리고 온-라인 확장기법의 수행 시 발생되는 특성에 대한 영향을 분석하며, 얻어진 결과를 토대로 비공유 데이터베이스 클러스터에서 가장 적합하면서도 온-라인 확장 기법적용을 위해 확장성이 우수한 데이터 분할기법을 찾는다.
본 논문에서는 비디오 영상 및 이미지 시퀀스의 특징점 추적을 통해 얻은 2D 좌표를 분해기법을 사용하여 특징점에 대응되는 3D 좌표를 추정하는 방법을 제안한다. 3D 좌표를 복원함과 동시에 카메라의 위치와 방향을 계산하였다. 분해 기법에는 직교분해기법, 스케일된 직교분해기법, 근접 원근분해기법이 있다. 본 논문에서는 형상과 카메라 움직임을 계산하는 개선된 직교 분해 기법을 제안한다. 제안된 방법을 실 영상에 대해 실험한 결과 구조 및 카메라 파라메터 추정의 정확성이 개선되었다.
이 논문은 편파화 정도(degree of polarization: DoP) 와 동일편파 위상차이(co-polarized phasedifference:CPD)를 이용하여 완전편파 SAR 영상을 분해하는 새로운 기법을 제안한다. 이 영상 분해 기법을 검증하기 위해 2009년에 춘천 지역에서 얻은 ALOS PALSAR 완전편파 L-밴드 영상데이터를 이용하여 이 새로운 영상 분해 기법의 결과와 기존의 3-성분 분해방법과 4-성분 분해방법의 결과들과 비교한다. ALOS PALSAR 영상 자료의 바다, 맨땅, 산림 그리고 도심지역을 선정하여 새로운 DoP-CPD 영상 분해기법을 적용한 결과, 제안된 영상 분해 기법의 정확도가 기존의 분해기법보다 높거나 유사함을 보인다.
공간 데이터베이스의 규모는 매우 방대하여 질의 처리에 많은 비용이 발생한다. 따라서 효율적인 질의 처리를 위해서는 질의 수행 결과의 예측이 필요하다. 이를 위해 실제 공간 데이터의 특성을 근접하게 나타내는 요약 데이터를 생성하여 그 결과를 통해 질의 결과의 크기를 추정하게 된다. 기존의 공간 데이터 요약 기법으로는 면적 균등 분할 기법, 개수 균등 분할 기법, 인덱스 분활 기법 등이 있다. 본 논문에서는 기존에 연구된 다양한 분말 기법에 대해 알아보고, 힐버트 공간 재움 곡선 방법에 개수 균등 분말 기법을 적용시킨 새로운 공간 분할 방법을 제안하여 기존의 방법과 새로운 방법의 성능을 비교한다.
빔공간 변환(beamspace transform) 기법은 공간 영역의 신호를 입사각 혹은 그 사인함수의 영역으로 변환하는 기법으로, MUSIC과 같은 음원 정위 및 추적(source localization and tracking) 문제나 적응 빔형성(adaptive beamforming)과 같은 문제에서 많이 사용되는 기법이다. 다채널 음원 분리 기법에 사용될 때에는, 음원의 정보 뿐만아니라 해당 음원의 이미지(image)를 재구성하여야 하므로 역변환 기법 또한 중요하다. 본 논문에서는 멀티 채널 음원 분리 기법을 위한 빔공간 변환 기법과 그 역변환 기법에 대하여 고찰하였으며, 특히 빔공간-영역 다채널 비음수 행렬 분해 기법에 적용되었을 때 그 성능에 미치는 영향을 중점적으로 살펴보았다.
문서 분할 기법은 문서 내에 존재하는 다양한 주제들을 자동적으로 추출하는 기법이다. 이 분야의 연구는 크게 사전적 관계에 근거한 기법과 통계적 데이터에 근거한 기법으로 나누어져 연구되어 왔다. 사전적 관계에 의한 기법은 단어들의 사전적 의미와 관계에 근거한 기법이고 통계적 데이터에 의한 기법은 주로 단어들의 분포를 이용한 기법이다. 여기에는 몇가지 문제점이 있는데 사전적 관계에 근거한 경우에는 분산된 주제들을 통합하여 추출하기 어렵고. 통계적 데이터에 근거한 기법은 정확한 주제의 개수를 찾기 어렵다는 점이다. 본 논문에서는 계층적 개념 트리를 이용하여 보다 정확한 개수의 주제들을 찾아낼 수 있는 문서 분할 기법에 대해 소개 하고자 한다.
기능 분해는 복잡한 시스템을 이해하기 위해 광범위에게 사용되는 시스템 모델링 기술이다. 기능 분해는 문제 영역을 기능별로 분해하는 데 그 기반을 두고 있으며 , 이는 시스템의 기능에 대한 식별을 전제로 한다. 일반적으로 시스템의 기능에 대한 식별은, 분석가에 의해 어떠한 조직적인 지침없이 비정형적으로 수행되는 것이 관례였다. 따라서 이러한 기법을 이용하면 시스템을 분할하거나 시스템의 기능을 올바르게 식별하기가 매우 어렵다. 본 논문은 이러한 기능 분석에 대해 use case을 이용한 기법을 제안하고자한다. 본 기법의 장점은 크게 두가지로 요약할수 있다. 첫째, 시스템의 분할과 기능에 대한 식별이 전통적인 기법보다 더 용이하다. 둘째, 시스템의 요구사항과 구현이 사용자에 의해 쉽게 검증될 수 있다. 본 기법은 하향식으로 이루어져, 구조적 분석과 같이 보편화된 기능 분석 기법들과 자연스럽게 병합될 수 있다. 본 논문은 이를 위해 use case의 식별, 그리고 이를 이용한 기능 분해를 단계적 과정과 가이드라인을 통해 설명하고, 이를 특정 에플리케이션에 적용하여 그 유용성을 입증한다.
이메일무단수집거부
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.