• Title/Summary/Keyword: 분해산물

Search Result 529, Processing Time 0.031 seconds

Degradation of Amaranth by Microorganisms (미생물(微生物)에 의한 Amaranth의 분해(分解))

  • Sohn, Jong Rok;Choi, Woo Young;Kim, Chan Jo
    • Korean Journal of Agricultural Science
    • /
    • v.10 no.1
    • /
    • pp.146-155
    • /
    • 1983
  • Fundamental study was carried out to elucidate the mechanisms of biological degradation of dyestuff in environments. A few bacterial strains which were capable of degrading amarnath were obtained from soil through an extensive screening program and identified by microbiolological properties. Conditions for bacterial growth and amaranth degradation were characterized and optimized, and the degradation products were identified. The results were as follows. 1. The most active strain A12-1 to be capable of degradation of amaranth was identified as Pseudomonas sp. 2. Optimal conditions for growth of the strain A12-1 were:$35^{\circ}C$ and pH 7.5, and growth was markedly increaesd by aeration. 3. Degradation of amaranth by the strain was accessed under similiar conditions for growth, however significantly inhibited when the culture was aerated. 4. Both bacterial growth and amaranth degradation were gradually decreased with increased concentration of amaranth in the culture. 5. Reaction of the crude enzyme from the strain A12-1 was optimal at $35^{\circ}C$ and pH 7.5 for degrading amaranth. 6. Sodium naphthionate and R-amino salt were found to be the products of amaranth degradation by the strain A12-1.

  • PDF

Studies on $\alpha$-amylase of Bacillus circulans F-2 (Part 3) Hydrolysis of Various Substrates by Purified $\alpha$-amylase (Bacillus circulans F-2가 생산하는 $\alpha$-amylase에 관한 연구 (제3보) 정제 $\alpha$-amylase에 의한 각종 기질의 분해)

  • ;Hajime Taniguchi;Yoshiharu Maruyama
    • Microbiology and Biotechnology Letters
    • /
    • v.10 no.4
    • /
    • pp.259-265
    • /
    • 1982
  • These experiments were conducted to investigate the hydrolysis products on the various oligosaccharides of Bacillus cirulans F-2 $\alpha$-amylase, and the hydrolysis rate on the various raw starches of Bacillus circulans F-2 $\alpha$-amylase, Bacillus amylotiquefaciens $\alpha$-amylase and Rhizopus niveus glucoamylase. The results obtained were as follows : 1. Maltotetraose, maltopentaose, maltohexaose, maltoheptaose and maltooctaose were hydrolyzed, but maltose and maltotriose were not hydrolyzed by Bacillus circulans F-2 $\alpha$-amylase. Among maltotetraose, maltopentaose, maltohexaose, maltoheptaose and maltooctaose, especially maltotetraose was hydrolyzed weakly by Bacillus circulans F-2 $\alpha$-amylase. 2. The Hydrolysis rate of oyster glycogen was slightly lower than soluble starch, amylose and amylopectin. 3. The hydrolysis rate of com starch was higher in shaking incubation than in stationary incubation, but the hydrolysis rate of potato starch was not definite according to kinds of enzyme. 4. On com, rice, arrowroot, high amylose corn, banana, sago, yam and potato starch, Bacillus circulans F-2 $\alpha$-amylase exhibited a remarkably higher hydrolysis rate than Bacillus amyloquefaciems $\alpha$-amylase and Rhizopus niveus glucoamylase.

  • PDF

Changes in Myrosinase Activity and Total Glucosinolate Levels in Korean Chinese Cabbages by Salting Conditions (배추 절임조건에 따른 Myrosinase 활성 및 Total Glucosinolates 함량 변화)

  • Hwang, Eun-Sun
    • Korean journal of food and cookery science
    • /
    • v.26 no.1
    • /
    • pp.104-109
    • /
    • 2010
  • Korean Chinese cabbage (Brassica campestris L. ssp. pekinensis) is one of the major cruciferous vegetables. Cruciferous vegetables contain a series of relatively unique secondary metabolites of amino acids called glucosinolates. Although glucosinolates do not appear to be bioactive, they are hydrolyzed by plant myrosinase when the cells in plants are damaged, and release biologically active compounds such as isothiocyanates, nitriles, and thiocyanates. The objective of this study was to determine the myrosinase activity and total glucosinolate levels of Korean Chinese cabbages by different salting times (0, 12, 18, and 24 h) and salt concentrations (6, 10, 14%). The total water content, salt content, and pH of brined cabbages decreased with increasing salting time. The myrosinase activity as determined by a glucose kit, decreased with increasing salting time and salt content. The total glucosinolates were purified using an anion exchange column and measured by UV-visible spectrophotometer. The fresh Korean Chinese cabbages contained $25.38{\pm}1.45\;{\mu}mol/g$ dry weight of glucosinolates. However, the total glucosinolates of brined cabbages decreased with increasing salting time and salt concentration. After 24 h of salting time, the total glucosinolates of brined cabbages rapidly decreased by $16.12{\pm}11.09$, $11.25{\pm}10.91$, $9.29{\pm}10.73\;{\mu}mol/g$ in 6%, 10%, and 14% salt solution, respectively. Overall, the total glucosinolate levels of Korean Chinese cabbages were found to vary inversely with salting time and salt concentration.

Molecular Weight Distribution Inside and Outside Capsules Using Coencapsulating Technology (공동캡슐화를 이용한 Capsule 내외부의 분자량 분포)

  • 이기선;임현수
    • KSBB Journal
    • /
    • v.16 no.4
    • /
    • pp.321-326
    • /
    • 2001
  • The change of molecular weight inside and outside a capsule produced using coencapsulating technology was investigated. Chitosan and chitosanase were enveloped in this membrane and product released was a loaded the medium by the principle of size exclusion. The leakage of substrate corresponding to the agitation speed was controlled by adjusting the alginate and CaCO$_3$ concentrations. The optimal condition of alginate concentration and agitation speed were 0.5% and 40rpm, respectively. Membrane thickness and capsules diameter were 10 $\mu$m and approx. 3.0 - 1.5 mm, respectively. Molecular weight difference by concentration and alginate viscosity were of little significance. In accordance with the molecular weight distribution versus enzyme concentration relationship, low concentration of enzyme produced high molecular weight oligosaccharides. At a 1.5 mm capsule size the product diffusion rate to outer surface highest. The molecular weight distribution of the released oligosaccharides was ranged from 1000 to 6000 Da. More than 80% of the initial activity of encapsulated enzyme retained after 8hrs of reaction.

  • PDF

Characteristics of Soy Protein Hydrolysates with Enzymes Produced by Microorganisms Isolated from Traditional Meju (전통 메주 유래 미생물이 생산하는 효소에 의한 대두단백 분해물의 특성)

  • 정낙현;신용서;김성호;임무현
    • Food Science and Preservation
    • /
    • v.10 no.1
    • /
    • pp.80-88
    • /
    • 2003
  • In order to establish the enzymatic hydrolysis system improving of taste and flavor in the preparation of soy protein hydrolysates using the enzymes with excellent hydrolytic ability and different hydrolysis pattern of soy protein, Degree of hydrolysis(DH) and surface hydrophobicity under the optimal conditions of enzyme reaction, hydrolysis patterns by the SDS electrophoresis and sensory evaluation of soy protein hydrolysates by enzyme reactions were investigated. Four enzyme reactions were highly activated at pH 7.0, 45$^{\circ}C$ under the optimal conditions. As result of changes on the pattern of soy-protein hydrolysates by SDS-electrophoresis, high molecular peptides of hydrolysates by No. 5(Mucor circinelloides M5) and No. 16(Bacillus megaterium B16) enzymes were slowly decrease and 66KD band of these were remained after 3hours reaction. Production of low molecular peptides of hydrolysates by No. 4(Aspergillus oryzae M4) and No. 95(Bacillus subtilis YG 95) enzymes were remarkably detected during the proceeding reactions. As results of HPLC analysis, low molecular peptides of 15∼70KD were mainly appeared during the proceeding enzyme reactions. And, the more DH was increased, the more SDS-surface hydrophobicity was decreased. Hydrolysates by No. 4 enzyme was not only the highest DH of all hydrolysates, but the strongest bitter taste in a sensory evaluation. Sweat taste among the hydrolysates showed little difference. But, when combinative enzymes were treated, combinative enzyme of No. 4(Aspergillus oryzae M4)and No. 16(Bacillus megaterium B16) showed the strongest sweat taste. In conclusion, we assumed that it will be possible to prepare the hydrolysates having functionality when soy-protein were hydrolyzed by these specific enzymes.

Degradation Pattern and Rate of Some Pesticides in Soils -Part II. Degradation Pttern and Rate of Thiolix in Soils- (토양처리(土壤處理) 농약제(農藥劑)의 분해율(分解率)에 관한 연구(硏究) -제2보(第二報). Thiolix의 토양중(土壤中) 분해(分解)에 대하여-)

  • Lim, Sun-Uk;Choi, Yong-Lak
    • Applied Biological Chemistry
    • /
    • v.26 no.4
    • /
    • pp.248-254
    • /
    • 1983
  • The effects of some soil conditions on the degradation rate and decomposing pattern of thiolix were investigated and the obtained results are summarized as follows: Thiolix degraded more rapidly in flood soils than in noon-flooded, and in wet soils than in dry soils under non-flooded soils. The degradation rates in non-flooded soils increased with higher pesticide concentration. Thiolix was more persistent in non-flooded soils under soil sterelization than under non-sterilization and degraded rapidly in glucose application. The metabolites identified from the soils by TLC and GLC include Thiolix alcohol, Thiolix sulfate, Thiolix ether and a unknown metabolite. Soil enzyme, acid phosphatase activity decreased at higher pesticide concentration, lower moisture contents of soil and the activity in glucose application was increased. Soil enzyme, urease and dehydrogenase activity decreased at higher pesticide concentrations.

  • PDF

Studies on the Exo-maltotetraohydrolase of Pseudomonas stutzeri IAM 12097 -Part III. Reaction products and hydrolysis rate on various carbohydrates of Exo-maltotetraohydrolase- (Pseudomonas stutzeri IAM 12097 의 Exo-maltotetraohydrolase에 관한 연구(硏究) -제3보(第三報). 각종기질(各種基質)에 대(對)한 Exo-maltotetraohydrolase의 분해산물(分解産物) 및 분해율(分解率)-)

  • Lee, Mi-Ja;Chung, Man-Jae
    • Applied Biological Chemistry
    • /
    • v.28 no.1
    • /
    • pp.1-7
    • /
    • 1985
  • Exo-maltotetraohydrolase produced by Pseudomonas stutzeri IAM 12097 was characterized with respect to substrate specificity, the reaction products and hydolysis rate on various carbohydrates. Maltopentaose, maltoheptaose, soluble starch, amylose, amylopectin, oyster glycogen and gelatinized starch of corn, potato, glutinous rice, green banana and arrow root were hydolyzed by this enzyme, but ${\alpha},{\beta},{\gamma}-cyclodextin$, sucrose, raffinose, lactose, pullulan, maltose, maltotriose and maltotetraose were not hydrolyzed. Among oligosaccharides, maltohexaose was favorably hydrolyzed by this enzyme and the main reaction product of oligosaccharides and polysaccharides was maltotetraose. Addition of pullulanase to this enzyme increased the hydolysis rate on gelatinized starches. tut it did not on raw starches. Among various starches, corn starch was favorably hydrolyzed by this enzyme, whereas it acted on potato starch, arrow root starch and high amylose corn starch weakly.

  • PDF

Degradation of the herbicide dicamba under sunlight and in soil (제초제 Dicamba의 자연광 및 토양 중 분해)

  • Oh, Kyeong-Seok;Oh, Byung-Youl;Park, Seung-Soon;Ihm, Yang-Bin;Kyung, Kee-Sung;Lee, Jae-Koo
    • The Korean Journal of Pesticide Science
    • /
    • v.4 no.3
    • /
    • pp.1-6
    • /
    • 2000
  • In order to elucidate the degradation of the herbicide dicamba, the degradabilities of dicamba under sunlight and in soils were investigated. The photodegradation rate of the authentic dicamba under sunlight condition was only 3.3% after 9 weeks. 4-Hydroxy dicamba turned out to be the major product, and 5-hydroxy dicamba was also identified. Dicamba was degraded to 3,6-dichlorosalicylic acid by demethylation in the viable soil, which resulted in 14.7 to 23.2% degradation of the applied amount during 8 weeks of incubation. Meanwhile, the degradation was quite slow in the sterilize soil, which revealed that the soil microbes played a major role in dicamba degradation.

  • PDF

NaOH Decomposition and Hydrochloric Acid Leaching of Monazite by Hot Digestion Method (Hot digestion법(去)에 의(依)한 모나자이트정광(精鑛)의 알카리분해(分解) 및 염산침출(鹽酸浸出) 거동(擧動))

  • Kim, Sung-Don;Lee, Jin-Young;Kim, Chul-Joo;Yoon, Ho-Sung;Kim, Joon-Soo
    • Resources Recycling
    • /
    • v.19 no.6
    • /
    • pp.70-76
    • /
    • 2010
  • It was to investigate the optimum leaching conditions for the NaOH hot digestion and hydrochloric acid leaching of Monazite. The optimum condition for NaOH hot digestion was that the concentration of NaOH/TREO mole ratio was 15, the temperature of decomposition $140^{\circ}C$, and reaction time 2 hrs. And the optimum condition for the hydrochloric acid leaching of NaOH hot digestion product was that the concentration of hydrochloric acid was 6N, leaching time 2 hrs and pulp density about 15%. The yield of rare earth oxide was above 90% on the above experimental condition.

Microbiological Degradation of the Phenoxy Herbicide MCPP [2-(2-Methyl-4-Chlorophenoxy) Propionic Acid] (페녹시계 제초제 MCPP [2-(2-Methyl-4-Chlorophenoxy) Propionic Acid]의 미생물학적 분해)

  • Oh, Kye Heon;Olli H. Tuovinen
    • Korean Journal of Microbiology
    • /
    • v.30 no.2
    • /
    • pp.96-100
    • /
    • 1992
  • The microbiological degradation of 2-(2-methyl-4-chloro-phenoxy) propionic acid (MCPP) was evaluated using mixed cultures of soil bacteria. The mixed cultures comprised Pseudomonas species, Flavobacterium species, and Achromobacter species. The bacteria used MCPP as the sole source of carbon and energy but only a partial degradation of the parent compound occurred MCPP degradation proceeded via the formation of 2-methyl-4-chlorophenol (2, 4-MCP) which was detected by high pressure liquid chromatography (PHLC) and confirmed by gas chromatography-mass sepctrometry. This intermediate occurred only transiently and no evidence was seen for the presence of other intermediates detectable by the reverse-phase HPLC or UV absorbance.

  • PDF