• Title/Summary/Keyword: 분포하중

Search Result 1,091, Processing Time 0.054 seconds

A Study on the Mechanical Properties of the Cretaceous Tuffs in Goheung Area. (고흥지역에 분포하는 백악기 응회암의 역학적 특성에 관한 연구)

  • Kim Hai-Gyoung;Koh Yeong-Koo;Oh Kang-Ho
    • The Journal of Engineering Geology
    • /
    • v.14 no.3 s.40
    • /
    • pp.273-285
    • /
    • 2004
  • The mechanical properties of the Cretaceous tuff distributed in the Goheung area were measured in the laboratory. Tuff (Goehung tuff and Palyeongsan welded tuff) in the study area is classified into vitric tuff with regard to its composition. The specific gravity, the dry density, the water content, the porosity and absorption ratio in tuffs of the study area are 2.51, $2.52(g/cm^2)$, 0.12($\%$), 4.51($\%$) and 1.91($\%$) in means, respectively. In the tuffs, dry densities are in inverse Proportion to Porosities, and absorption ratios are highly proportional with Porosities. The uniaxial compressive strengths(UCS) in the tuffs ranges from 80.4 to 208(MPa) and the average of the strength is 141.1(MPa). According to the engineering classification of intact rock (Deere & Miller, 1966), the tuffs are assigned to the high strength rocks. The point load strength index ($Is_a$) in axial test is 4.2(MPa) on the average, and the point load strength index ($Is_d$) in diametral test is 2.2(MPa) in mean, and the point load strength anisotrophic index($Ia_{(50)}$) by the ratio of $Is_a$ to $Is_d$ is 1.93. There is close linear correlation between the uniaxial compressive strength and point load strength index, and the equation representing the correlation is postulated as follows : UCS = 22 $Is_{(50)}$ +49 (MPa) (r=0.95). It is considered that this equation is a useful tool to estimate UCS for tuff in Goheung area.

STRESS ANALYSIS OF MAXILLARY PREMOLARS WITH COMPOSITE RESIN RESTORATION OF NOTCH-SHAPED CLASSⅤCAVITY AND ACCESS CAVITY ; THREE-DIMENSIONAL FINITE ELEMENT STUDY (쐐기형 5급 와동과 근관와동을 복합레진으로 수복한 상악 소구치에 대한 응력 분석: 3차원 유한요소법적 연구)

  • Lee, Seon-Hwa;Kim, Hyeon-Cheol;Hur, Bock;Kim, Kwang-Hoon;Son, Kwon;Park, Jeong-Kil
    • Restorative Dentistry and Endodontics
    • /
    • v.33 no.6
    • /
    • pp.570-579
    • /
    • 2008
  • The purpose of this study was to investigate the distribution of tensile stress of canal obturated maxillary second premolar with access cavity and notch-shaped class V cavity restored with composite resin using a 3D finite element analysis. The tested groups were classified as 8 situations by only access cavity or access cavity with notch-shaped class V cavity (S or N), loading condition (L1 or L2), and with or without glass ionomer cement base (R1 or R2). A static load of 500 N was applied at buccal and palatal cusps. Notch-shaped cavity and access cavity were filled microhybrid composite resin (Z100) with or without GIC base (Fuji II LC). The tensile stresses presented in the buccal cervical area, palatal cervical area and occlusal surface were analyzed using ANSYS. Tensile stress distributions were similar regardless of base. When the load was applied on the buccal cusp, excessive high tensile stress was concentrated around the loading point and along the central groove of occlusal surface. The tensile stress values of the tooth with class Ⅴ cavity were slightly higher than that of the tooth without class V cavity. When the load was applied the palatal cusp, excessive high tensile stress was concentrated around the loading point and along the central groove of occlusal surface. The tensile stress values of the tooth without class V cavity were slightly higher than that of the tooth with class V cavity.

Analysis for A Partial Distribution Loaded Orthotropic Rectangular Plate with Various Boundary Condition (다양한 경계조건에서 부분 분포 하중을 받는 이방성 사각평판 해석)

  • See, Sangkwang
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.22 no.5
    • /
    • pp.13-22
    • /
    • 2018
  • In this study, a governing differential equation for the bending problem of orthotropic rectangular plate is drived. It's exact solution for various boundary conditions is presented. This solution follows traditional method like Navier's solution or Levy's solution that transforms the governing differential equation into an algebraic equation by using trigonometric series. To obtain a solution by Levy's method, it is required that two opposite edges of the plate be simply supported. And the boundary conditions, for which the Navier's method is applicable, are simply supported edge at all edges. In this study, it overcomes the limitations of the previous Navier's and Levy's methods.This solution is applicable for any combination of boundary conditions with simply supported edge and clamped edge in x, y direction. The plate could be subjected to uniform, partially uniform, and line loads. The advantage of the solution is that it is the exact solution as well as it overcomes the limitations of the previous Navier's and Levy's methods. Calculations are presented for orthotropic plates with nonsymmetric boundary conditions. Comparisons between the result of this paper and the result of Navier, Levy and Szilard solutions are made for the isotropic plates. The deflections were in excellent agreement.

Effects of occlusal load on the stress distribution of four cavity configurations of noncarious cervical lesions: A three-dimensional finite element analysis study (네 가지 형태의 비우식성 치경부 병소의 3차원 유한요소법적 응력분석)

  • Jeon, Sang-Je;Park, Jeong-Kil;Kim, Hyeon-Cheol;Woo, Sung-Gwan;Kim, Kwang-Hoon;Son, Kwon;Hur, Bock
    • Restorative Dentistry and Endodontics
    • /
    • v.31 no.5
    • /
    • pp.359-370
    • /
    • 2006
  • The objective of this study was to investigate the effect of excessive occlusal loading on stress distribution on four type of cervical lesion, using a three dimensional finite element analysis (3D FEA). The extracted maxillary second premolar was scanned serially with Micro-CT. The 3D images were processed by 3D-DOCTOR. ANSYS was used to mesh and analyze 3D FE model. Four different lesion configurations representative of the various types observed clinically for teeth were studied. A static point load of 500N was applied to the buccal and lingual cusp (Load A and B). The principal stresses in lesion apex, and vertical sectioned margin of cervical wall were analyzed. The results were as follows 1. The patterns of stress distribution were similar but the magnitude was different in four types of lesion 2. The peak stress was observed at mesial corner and also stresses concentrated at lesion apex. 3. The compressive stress under load A and the tensile stress under load B were dominant stress. 4. Under the load, lesion can be increased and harmful to tooth structure unless restored.

Numerical Study on the Skin Friction Characteristics of Tension Type Ground Anchors in Weathered Soil (풍화토 지반에 적용된 인장형 앵커의 주면마찰응력 분포특성에 대한 수치해석적 연구)

  • Jeong, Heyon-Sik;Han, Kwang-Suk;Lee, Yeong-Saeng
    • Journal of the Korean Geotechnical Society
    • /
    • v.33 no.1
    • /
    • pp.39-56
    • /
    • 2017
  • Distribution of both axial force and skin friction should be investigated in order to estimate pull-out capacity of ground anchors. Numerical method of computing load-transfer characteristics of the ground anchors, however, has not been specified and studies on this area are not sufficient. This study suggested the numerical method of simulating the characteristics of axial force and skin friction distribution against the tension type ground anchors. Also, debonding behaviors of skin friction and axial force were calculated by the suggested numerical method as a function of load levels. As a result of the review, it is confirmed that the distributions of axial force and skin friction by the suggested numerical method are relatively similar to those of field test results.

Probabilistic Characteristics of Fatigue Behavior Parameter of Paris-Erdogan Law in Mg-Al-Zn Alloy (Mg-Al-Zn 합금의 Paris-Erdogan 법칙에 따른 피로거동 파라미터의 확률론적 특성)

  • Choi, Seon-Soon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.35 no.4
    • /
    • pp.375-381
    • /
    • 2011
  • The primary aim of this study is to investigate the probabilistic characteristics of the fatigue parameters that describe the fatigue crack growth behavior in magnesium alloy. Statistical fatigue crack propagation experiments have been performed on rolled AZ31 magnesium alloy CT specimens with different specimen thickness, load ratio, and maximum load at ambient temperature in a laboratory. Using the statistical fatigue data obtained from these experiments, the goodness-of-fit of the probability distribution of the fatigue behavior parameters is evaluated in this study by performing statistical analyses. The crack growth rate coefficient is a fatigue parameter having a very large COV(Coefficient of Variation), but the variation of a crack growth rate exponent is not substantial. It is considered that a crack growth rate exponent can be a material constant. It is also found that the best fit probability distribution of the parameters such as the crack growth rate coefficient and crack growth rate exponent for a magnesium alloy is a three-parameter Weibull distribution, and two-parameter Weibull distribution is a good distribution only for the crack growth rate coefficient.

Stress Analysis of Pressurization Type Propellant Tank in the Satellite (인공위성용 능동가압형 추진제 탱크의 응력 해석)

  • 한근조;심재준;최진철
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.2 no.1
    • /
    • pp.21-30
    • /
    • 1998
  • Design parameters which used to analyze the stress distribution on the tank wall were defined to develop the propellant tank and obtain optimal values. 1/4 modeling of total tank was selected to calculate the stress distribution with respect to the variation of the support lug location and the tank wall thickness and 1/2 modeling was selected for the stress distributions with respect to the variation of fuel outlet location. Actually, 350psi was applied as static load and 12 gravity as a dynamic load during launching on the internal tank wall. The structural analysis was done with respect to attaching condition of the tank in the satellite. Also the effect of the variation of the propellant outlet location from $0^{\cire}$ to $25^{\cire}$ on the stress distribution was investigated. The equivalent stress distribution and optimal parameters induced from analysis results of the each condition will be used as the fundamental data to design the propellant tank.

  • PDF

Radiation Characteristics of Noise Generated by Steady Loading on Rotating Blade (회전익 표면의 정상하중에 의한 소음의 방사특성)

  • Jeon, Wonju;Lee, Duck-Joo
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.36 no.4
    • /
    • pp.307-314
    • /
    • 2008
  • Loading noise generated by steady aerodynamic force exerted on the rotating body surface is theoretically analyzed and its radiation characteristics is examined as a fundamental research of helicopter rotor noise. For simplicity, the force exerted on each blade is not distributed but concentrated at one point and the noise is evaluated by using Lowson' exact formula with a discussion of the physical meaning of each term in the formula. For a single point force rotating with various angular frequencies, we investigated the radiation characteristics and theoretically explained the physical behavior at near and far-field. By investigating the amplitude of acoustic pressure with various distances, we observed the different decreasing ratio at near- and far-field with the discussion of the effect of acceleration of angular frequency. Finally, the phenomenon that the noise level is reduced everywhere as the number of blade increases is explained with the suggestion of a noise reduction idea, the limitations of this study, and the future research topics.

Behavior of Model Sheet Piles under Vertical Loads (수직하중을 받는 모형 강널말뚝의 거동)

  • 윤여원;김두균
    • Geotechnical Engineering
    • /
    • v.14 no.6
    • /
    • pp.5-16
    • /
    • 1998
  • In order to study the behavior of the sheet pile under vertical load in sands, model pile tests using calibration chamber are performed. For this research, five model piles, with the same section area and different degree of inclination of flange, were made. And model pile tests were conducted for each of these piles with different relative density and direction of applied load. For model pile which has the same shape, compression capacity is about 100% higher than pullout capacity and the difference increases with increasing relative density. Pullout ultimate capacity and corresponding displacement increase with increasing relative density and the pullout capacities remained almost the same irrespective of the inclination of flanges for the same density. The ultimate capacity under compression load is highest at 30$^{\circ}$ of inclination of flanges and the trend is more evident with increasing relative density. From the analysis of load distribution, the higher loading capacity at 30$^{\circ}$ of inclination of flanges with same section area may be attributed to the partial soil plug between flanges.

  • PDF

Characteristics of Heavy Vehicles Using Expressway Networks Based on Weigh-in-motion Data (WIM 데이터를 이용한 고속도로 중차량 특성 분석)

  • Gil, Heungbae;Kang, Sang Gyu
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.33 no.5
    • /
    • pp.1731-1740
    • /
    • 2013
  • The design life and durability of the bridges are strongly affected by the Gross Vehicle Weight(GVW) of heavyweight trucks. The Weigh-In-Motion(WIM) systems are typically used to collect information on truck total weight and speed. The statistical analysis of the GVW measured using High Speed WIM systems showed that most of heavy vehicles were from Vehicle Type 7, 10, and 12. The analysis was also carried out to determine goodness of fit with theoretical probability distributions. The normal distribution was shown to best describe the overall distribution of GVW. The top 10% of the GVW appeared to best fit by the Weibull 3 probability distribution.