• Title/Summary/Keyword: 분포추정알고리즘

Search Result 331, Processing Time 0.03 seconds

Derivation of Plotting Position Formula Using Genetic Algorithm for Gumbel Distribution (유전자 알고리즘을 이용한 Gumbel 분포의 도시위치공식 유도)

  • Kim, Soo-Young;Shin, Hong-Joon;Kho, Youn-Woo;Heo, Jun-Haeng
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2008.05a
    • /
    • pp.173-178
    • /
    • 2008
  • 확률도시위치는 주로 도시적 해석을 통한 연최대홍수량 또는 연최대강우량의 초과확률의 추정치 산정에 사용되며 빈도해석을 통해 선정된 적정 확률분포형과 표본자료의 개략적인 적합도를 도시적으로 파악할 수 있도록 해주기 때문에 오래 전부터 널리 이용되어 왔다. 본 연구에서는 Gumbel 분포에 적합한 도시위치공식을 새롭게 추정하기 위해 Gumbel 분포의 order statistic과 확률가중모멘트를 이용하여 다양한 표본크기에 대한 도시위치공식의 기본식을 유도하였고, 최적화 기법 중 하나인 유전자 알고리즘을 이용하여 유도된 도시위치공식의 매개변수를 추정하였다. 또한 본 연구에서 추정된 도시위치공식과 기존에 널리 사용되고 있는 도시 치공식의 정확도를 비교하기 위해 reduced variate 간의 오차를 계산하여 비교 검토하였다. 그 결과, 금회 추정된 도시위치공식은 높은 순위에서는 기존의 도시위치공식에 비해 더 정확도가 높은 것으로 나타났고, 표본크기에 대한 순위를 모두 고려할 경우에는 기존의 도시위치공식에 비해 정확도가 높은 것으로 나타나 Gumbel 분포에 대해서 높은 정확도를 보이는 것으로 나타났다.

  • PDF

A Bayesian Sampling Algorithm for Evolving Random Hypergraph Models Representing Higher-Order Correlations (고차상관관계를 표현하는 랜덤 하이퍼그래프 모델 진화를 위한 베이지안 샘플링 알고리즘)

  • Lee, Si-Eun;Lee, In-Hee;Zhang, Byoung-Tak
    • Journal of KIISE:Software and Applications
    • /
    • v.36 no.3
    • /
    • pp.208-216
    • /
    • 2009
  • A number of estimation of distribution algorithms have been proposed that do not use explicitly crossover and mutation of traditional genetic algorithms, but estimate the distribution of population for more efficient search. But because it is not easy to discover higher-order correlations of variables, lower-order correlations are estimated most cases under various constraints. In this paper, we propose a new estimation of distribution algorithm that represents higher-order correlations of the data and finds global optimum more efficiently. The proposed algorithm represents the higher-order correlations among variables by building random hypergraph model composed of hyperedges consisting of variables which are expected to be correlated, and generates the next population by Bayesian sampling algorithm Experimental results show that the proposed algorithm can find global optimum and outperforms the simple genetic algorithm and BOA(Bayesian Optimization Algorithm) on decomposable functions with deceptive building blocks.

동적 불완전 수리 모형 및 분석 절차의 개발

  • 백상엽;임태진;홍정식;이창훈;김태운
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1996.05b
    • /
    • pp.719-724
    • /
    • 1996
  • 본 연구는 유지, 보수되는 상시 작동 시스템에 대한 신뢰성 분석을 위해 동적 불완전 수리모형 및 분석 절차의 개발을 수행하였다. 또한 수리 상태에 대한 데이타가 완전히 잠재적(masked)이라 하더라도 기본 분포(base-line distribution)가 와이블 분포라는 가정하에 모수적 추정 절차를 개발하였다. 개발된 추정 절차는 기본적으로 EM(Expectation and Maximization : EM) 알고리즘의 틀(framework)을 유지하고 있다. 특히 최소 수리 특성으로 인해 분포가 변화함에 따라 발생하는 추정의 어려움을 해결하기 위해 데이타 변환(transformation)식을 제시하고 이러한 변환 데이타를 사용함으로써 추가적 데이타의 요구없이 잠재적 데이타를 사용하여 추정을 가능하게 하는 모수 추정 알고리즘을 제시하였다.

  • PDF

Comparison of Three Parameter Estimation Methods for Mixture Distributions (혼합분포모형의 매개변수 추정방법 비교)

  • Shin, Ju-Young;Kim, Sooyoung;Kim, Taereem;Heo, Jun-Haeng
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2017.05a
    • /
    • pp.45-45
    • /
    • 2017
  • 상이한 자연현상으로 발생된 자료들은 때때로 통계적으로 다른 특성을 가지는 경우가 있다. 이런 자료들은 다른 두 개 이상의 모집단에서 자료가 발생한 것으로 가정할 수 가 있다. 기존에 널리 사용되어온 분포형 모형의 경우 단일한 모집단으로부터 자료가 발생한다는 가정하에서 개발된 모형들로 위에서 언급한 자료들을 적절히 모의할 수 없다. 이런 상이한 모집단에서 발생된 자료를 모형화 하기 위해서 혼합분포모형(mixture distribution)이 개발되었다. 홍수나 가뭄 등과 같은 극치 사상의 경우 다양한 자연현상들로부터 발생하기에 혼합분포모형을 적용할 경우 보다 정확한 모의가 가능하다. 혼합분포모형은 두 개 이상의 비혼합분포모형들을 가중합하여 만들어진다. 혼합 분포모형의 형태로 인하여 기존의 분포형 모형의 매개변수 추정 모형으로 널리 사용되던 최우도법 (maximum likelihood method), 모멘트법(method of moment), 확률가중모멘트법 (probability weighted moment method) 등을 이용하여 혼합분포모형의 매개변수를 추정하는 것이 용이 하지 않다. 혼합분포모형의 매개변수 추정 방법으로는 Expectation-Maximization (EM) 알고리즘, Meta-Heuristic Maximum Likelihood (MHML) 방법, Markov Chain Monte Carlo (MCMC) 방법 등이 적용되고 있다. 현재까지 수자원 분야에서 사용되는 극치 자료를 혼합분포모형을 이용하여 모의할 때 매개변수 추정방법에 따른 특성에 대한 연구가 진행되지 않았다. 본 연구에서는 우리나라 연최대강우량 자료를 이용하여 혼합분포모형의 매개변수 추정방법 (EM 알고리즘, MHML 방법, MCMC 방법) 들의 특성들을 비교 분석하였다. 혼합분포모형으로는 Gumbel-Gumbel 혼합분포 모형을 적용하였다. 본 연구의 결과는 향후 혼합분포모형을 이용한 연구에 좋은 기초자료로 사용될 수 있을 것으로 판단된다.

  • PDF

An Approach for the Estimation of Mixture Distribution Parameters Using EM Algorithm (복합확률분포의 파라메타 추정을 위한 EM 알고리즘의 적용 연구)

  • Daeyoung Shim;SangGu Kim
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.22 no.4
    • /
    • pp.35-47
    • /
    • 2023
  • Various single probability distributions have been used to represent time headway distributions. However, it has often been difficult to explain the time headway distribution as a single probability distribution on site. This study used the EM algorithm, which is one of the maximum likelihood estimations, for the parameters of combined mixture distributions with a certain relationship between two normal distributions for the time headway of vehicles. The time headway distribution of vehicle arrival is difficult to represent well with previously known single probability distributions. But as a result of this analysis, it can be represented by estimating the parameters of the mixture probability distribution using the EM algorithm. The result of a goodness-of-fit test was statistically significant at a significance level of 1%, which proves the reliability of parameter estimation of the mixture probability distribution using the EM algorithm.

Estimation of the Mixture of Normals of Saving Rate Using Gibbs Algorithm (Gibbs알고리즘을 이용한 저축률의 정규분포혼합 추정)

  • Yoon, Jong-In
    • Journal of Digital Convergence
    • /
    • v.13 no.10
    • /
    • pp.219-224
    • /
    • 2015
  • This research estimates the Mixture of Normals of households saving rate in Korea. Our sample is MDSS, micro-data in 2014 and Gibbs algorithm is used to estimate the Mixture of Normals. Evidences say some results. First, Gibbs algorithm works very well in estimating the Mixture of Normals. Second, Saving rate data has at least two components, one with mean zero and the other with mean 29.4%. It might be that households would be separated into high saving group and low saving group. Third, analysis of Mixture of Normals cannot answer that question and we find that income level and age cannot explain our results.

Daily rainfall simulation considering distribution of rainfall events in each duration (강우사상의 지속기간별 분포 특성을 고려한 일강우 모의)

  • Jung, Jaewon;Bae, Younghye;Kim, Kyunghun;Han, Daegun;Kim, Hung Soo
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2019.05a
    • /
    • pp.361-361
    • /
    • 2019
  • 기존의 Markov Chain 모형으로 일강우량 모의시에 강우의 발생여부를 모의하고 강우일의 강우량은 Monte Carlo 시뮬레이션을 통해 일강우 분포 특성에 맞는 분포형에서 랜덤으로 강우량을 추정하는 것이 일반적이다. 이때 강우 지속기간에 따른 강도 및 강우의 시간별 분포 등의 강우 사상의 특성을 반영할 수 없다는 한계가 있다. 본 연구에서는 이를 개선하기 위해 강우 사상을 지속기간에 따라 강우량을 추정하였다. 즉 강우 사상의 강우 지속일별로 총강우량의 분포형을 비매개변수 추정이 가능한 핵밀도추정(Kernel Density Estimation, KDE)를 적용하여 각각 추정하고, 강우가 지속될 경우에 지속일별로 해당하는 분포형에서 강우량을 구하였다. 각 강우사상에 대해 추정된 총 강우량은 k-최근접 이웃 알고리즘(k-Nearest Neighbor algorithm, KNN)을 통해 관측 강우자료에서 가장 유사한 강우량을 가지는 강우사상의 강우량 일분포 형태에 따라 각 일강우량으로 분배하였다. 본 연구는 기존의 강우량 추정 방법의 한계점을 개선하고자 하였으며, 연구 결과는 미래 강우에 대한 예측에도 활용될 수 있으며 수자원 설계에 있어서 기초자료로 활용될 수 있을 것으로 기대된다.

  • PDF

Evolutionary Algorithms with Distribution Estimation by Variational Bayesian Mixtures of Factor Analyzers (변분 베이지안 혼합 인자 분석에 의한 분포 추정을 이용하는 진화 알고리즘)

  • Cho Dong-Yeon;Zhang Byoung-Tak
    • Journal of KIISE:Software and Applications
    • /
    • v.32 no.11
    • /
    • pp.1071-1083
    • /
    • 2005
  • By estimating probability distributions of the good solutions in the current population, some researchers try to find the optimal solution more efficiently. Particularly, finite mixtures of distributions have a very useful role in dealing with complex problems. However, it is difficult to choose the number of components in the mixture models and merge superior partial solutions represented by each component. In this paper, we propose a new continuous evolutionary optimization algorithm with distribution estimation by variational Bayesian mixtures of factor analyzers. This technique can estimate the number of mixtures automatically and combine good sub-solutions by sampling new individuals with the latent variables. In a comparison with two probabilistic model-based evolutionary algorithms, the proposed scheme achieves superior performance on the traditional benchmark function optimization. We also successfully estimate the parameters of S-system for the dynamic modeling of biochemical networks.

Speedup of EM Algorithm by Binning Data for Normal Mixtures (혼합정규분포의 모수 추정에서 구간도수 EM 알고리즘의 실행 속도 개선)

  • Oh, Chang-Hyuck
    • Communications for Statistical Applications and Methods
    • /
    • v.15 no.1
    • /
    • pp.1-11
    • /
    • 2008
  • For a large data set the high computational cost of estimating the parameters of normal mixtures with the conventional EM algorithm is crucially impedimental in applying the algorithm to the areas requiring high speed computation such as real-time speech recognition. Simulations show that the binned EM algorithm, being compared to the standard one, significantly reduces the cost of computation without loss in accuracy of the final estimates.

Estimation algorithm of ocean surface temperature flow based on Morphological Operation (형태학적 연산에 기반한 해수면 온도 분포 추정 알고리즘)

  • Gu, Eun-Hye;Cho, Woong-Ho;Park, Kil-Houm
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.22 no.2
    • /
    • pp.253-260
    • /
    • 2012
  • Target detection is very difficult with complex clutters in IRST(Infrared Search and Track) system for a long distance target. Especially sea-clutter and ocean-surface with non-uniform temperature distribution make it difficult to detect incoming targets in images obtained in sea environment. In this paper, we propose a novel method based on morphological method for estimation of ocean surface with non-uniform temperature flow. In order to estimate the exact ocean surface temperature flow, we divided it into upper and lower bound flow. And after estimating it, the final ocean surface temperature flow is derived by a mean value of the estimated results. Also, we apply the multi-weighted technique with a variety of sizes of structure elements to overcome sub-sampling effect by using morphology method. Experimental results for ocean surface images acquired from many different environments are compared with results of existing method to verify the performance of the proposed methods.