• 제목/요약/키워드: 분수조화 주파수 성분

검색결과 1건 처리시간 0.013초

층류박리 후향계단 유동의 이중주파수 가진 (Double Frequency Forcing of the Laminar Separated Flow over a Backward-Facing Step)

  • 김성욱;최해천;유정열
    • 대한기계학회논문집B
    • /
    • 제27권8호
    • /
    • pp.1023-1032
    • /
    • 2003
  • The effect of local forcing on the separated flow over a backward-facing step is investigated through hot-wire measurements and flow visualization with multi-smoke wires. The boundary layer upstream of the separation point is laminar and the Reynolds number based on the free stream velocity and the step height is 13800. The local forcing is given from a slit located at the step edge and the forcing signal is always defined when the wind tunnel is in operation. In case of single frequency forcing, the streamwise velocity and the reattachment length are measured under forcing with various forcing frequencies. For the range of 0.010〈S $t_{\theta}$〈0.013, the forcing frequency component of the streamwise velocity fluctuation grows exponentially and is saturated at x/h = 0.75 , while its subharmonic component grows following the fundamental and is saturated at x/h = 2.0. However, the saturated value of the subharmonic is much lower than that of the fundamental. It is observed that the vortex formation is inhibited by the forcing at S $t_{\theta}$ = 0.019 . For double frequency forcing, natural instability frequency is adopted as a fundamental frequency and its subharmonic is superposed on it. The fundamental frequency component of the streamwise velocity grows exponentially and is saturated at 0.5 < x/h < 0.75, while its subharmonic component grows following the fundamental and is saturated at x/h= 1.5 . Furthermore, the saturated value of the subharmonic component is much higher than that for the single frequency forcing and is nearly the same or higher than that of the fundamental. It is observed that the subharmonic component does not grow for the narrow range of the initial phase difference. This means that there is a range of the initial phase difference where the vortex parring cannot be enhanced or amplified by double frequency forcing. In addition, this effect of the initial phase difference on the development of the shear layer and the distribution of the reattachment length shows a similar trend. From these observations, it can be inferred that the development of the shear layer and the reattachment length are closely related to the vortex paring.