• Title/Summary/Keyword: 분산장약 공법

Search Result 4, Processing Time 0.018 seconds

A Case Study of Deck-Charge Blasting Using Electronic Blasting Systems In Urban Area (분산장약공법을 이용한 도심지 전자발파 시공사례)

  • Son, Young-Bok;Kim, Gab-Soo;Kim, Jae-Hoon
    • Explosives and Blasting
    • /
    • v.34 no.3
    • /
    • pp.21-26
    • /
    • 2016
  • In case of urban blasting works at near neighbors, the size of one blasting should be minimized to reduce the vibration and noise. However, the complaints is not decreased due to increased numbers of blasting per day so that the period of blasting works become long. This case study is related to urban apartment construction site. In order to overcome the weakness of general detonators which is required many blasting times to meet the day productivity, we have been applied deck-charge blasting method using electronic detonators and then we successfully increased the day productivity with much less blasting times. Hence, we had effectively achieved the declined neighbors'complaints and shortening construction period.

Case study on the Distributed Multi-stage Blasting using Stemming-Help Plastic Sheet and Programmable Sequential Blasting Machine (전색보호판과 다단발파기를 이용한 다단식분산발파의 현장 적용 사례)

  • Kim, Se-Won;Lim, Ick-Hwan;Kim, Jae-Sung
    • Explosives and Blasting
    • /
    • v.31 no.2
    • /
    • pp.14-24
    • /
    • 2013
  • The most effective way of the rock removing works in the downtown area is to removing rocks by splitting the rock by blasting with small amount of explosives in the hole. However environmental factors not only limit the applications but also increase the forbidden area. As this is a distributed multi-stage blasting method and to reduce vibration by applying the optimized precisioncontrol-blasting method, it is applicable in all situations. The process is to fix the stemming-help plastic sheet to the hole entrance when stemming explosives and insert detonator and explosive primer with same delay time, two or three sets. This method is more efficient in the downtown area where claims and dispute from vibration are expected. This method is easily usable by designing blast pattern even in the area where delay time blasting is difficult after multi-stage explosive stemming due to short length of blast hole (1.2~3.0m) and there is no detonator wire shortage or dead-pressure.

Electronic Blasting Case Study Method Using Deck Charge (분상장약공법을 이용한 전자발파 시공사례)

  • Kim, Gab-Soo;Son, Young-Bok;Kim, Jae-Hoon;Choi, Hyung-Bin
    • Explosives and Blasting
    • /
    • v.33 no.1
    • /
    • pp.27-34
    • /
    • 2015
  • Recently, the residence complaints have been increased by blast vibration and noise issue due to increased urban blasting works so that the trouble between construction company and residence have been continuously increased. Deck-charge blasting method using electronic detonator provided not only blast vibration and noise control but also minimized residence complaints through shortening of the blasting period. This blasting method will be widely used for maximizing urban blasting productivity.

A Numerical Study on the Reduction Effect of Blasting Vibration with Cut Method (심발공법에 따른 발파진동 저감효과에 대한 수치해석적 연구)

  • Son, Ji-Ho;Kim, Byung-Ryeol;Lee, Seung-Joong;Kim, Nam-Soo;Lee, Hyo;Choi, Sung-Oong
    • Explosives and Blasting
    • /
    • v.37 no.1
    • /
    • pp.1-13
    • /
    • 2019
  • The repeated blasting vibration, which is induced commonly in NATM excavation site, can cause a severe damage to the nearby facilities. It is known that the most effective method for reducing blasting vibration includes the use of electronic detonator, deck charge and change of cut method, and so forth. In order to analyze the effect of blasting vibration reduction, in this study, three-dimensional FDM (Finite Difference Method) program FLAC3D has been used for reflecting the blasting hole, delayed time and charging amount. Also the numerical analysis has been performed by applying a dynamic load to each blasting hole. The cut method has been applied with several methods, such as V-cut and Double-drilled parallel cut, which are common in tunnel construction sites. Also, the field test blasting has been carried out in order to compare the measured data with results of numerical analysis. It was shown that the numerical analysis and the field measurement coincide well.