This paper proposes a high speed back propagation neural networks which uses the residue number system. making the high speed operation possible without carry propagation Consisting of MAC(Multiplication and Accumulation) operator unit using Residue number system and sigmoid function operator unit using Mixed Residue Conversion is designed, The Designed circuits are descripted by VHDL and synthesized by Compass tools. Result of simulations shows that critical path delay time is about 19nsec and the size can be reduced to 40% compared to the neural networks implemented by the real number operation unit. The proposed design circuits can be implemented in parallel distributed processing system with desired real time processing.
Kim, Tae-Hong;Um, Jung-Ho;Cho, Min-Hee;Choi, Sung-Pil;Jung, Han-Min
Proceedings of the Korean Information Science Society Conference
/
2012.06b
/
pp.423-425
/
2012
비정형데이터의 분석을 위한 다양한 연구가 진행되면서 폭발적인 트리플 데이터 증가가 이루어졌다. 이는 결국 서비스 인프라의 병목현상을 초래하고 있으며, 그 해결책으로서 분산 병렬 아키텍처가 주목받고 있다. 본 논문은 대용량 시맨틱웹 자원을 저장, 적재, 질의 및 추론할 수 있는 트리플 저장소 특성에 가장 적합한 시스템 구조를 선정하기 위해 대용량 처리 능력, 데이터 처리 속도 및 안정성의 측면에서 연합 DBMS와 맵리듀스를 분석하는데 초점을 맞추고 있다. 분석 결과는 대용량 데이터 기반 트리플 저장소의 특성과 아키텍처의 유연성 및 향후 성능 개선 가능성을 판단하는 요소로 활용하여 맵리듀스 방식을 대용량 트리플 저장소에 적합한 방식으로 선정하였다. 본 연구는 대용량 데이터 기반 트리플 저장소 개발의 방향 수립을 위한 기반 연구로서 중요한 가치를 가진다.
Proceedings of the Korean Institute of Information and Commucation Sciences Conference
/
2015.10a
/
pp.331-333
/
2015
Data is increasing explosively with the spread of networks and mobile devices and there are problems in effectively processing the rapidly increasing data using existing recommendation techniques. Therefore, researches are being conducted on how to solve the scalability problem of the collaborative filtering technique. In this paper applies MapReduce, which is a distributed parallel process framework, to the collaborative filtering technique to reduce the scalability problem and heighten accuracy. The proposed technique applies MapReduce and the index technique to a user-based collaborative filtering technique and as a method which improves neighbor numbers which are used in similarity calculations and neighbor suitability, scalability and accuracy improvement effects can be expected.
Proceedings of the Korea Information Processing Society Conference
/
2013.05a
/
pp.476-477
/
2013
Gadget-2 is a scientific simulation code has been used for many different types of simulations like, Colliding Galaxies, Cluster Formation and the popular Millennium Simulation. The code is parallelized with Message Passing Interface (MPI) and is written in C language. There is also a Java adaptation of the original code written using MPJ Express called Java Gadget. Java Gadget writes a lot of checkpoint data which may or may not use the HDF-5 file format. Since, HDF-5 is MPI-IO compliant, we can use our MPJ-IO library to perform parallel reading and writing of the checkpoint files and improve I/O performance. Additionally, to add reliability to the code execution, we propose the usage of Hadoop Distributed File System (HDFS) for writing the intermediate (checkpoint files) and final data (output files). The current code writes and reads the input, output and checkpoint files sequentially which can easily become bottleneck for large scale simulations. In this paper, we propose Sim-Hadoop, a framework to leverage HDFS and MPJ-IO for improving the I/O performance of Java Gadget code.
The Journal of the Institute of Internet, Broadcasting and Communication
/
v.23
no.4
/
pp.79-84
/
2023
Apache Spark, which provides the fastest processing speed among recent distributed and parallel processing technologies, provides real-time functions and machine learning functions. Although official documentation guides for these functions are provided, a method for fusion of functions to predict a specific value in real time is not provided. Therefore, in this paper, we conducted a study to predict the value of data in real time by fusion of these functions. The overall configuration is collected by downloading stock price data provided by the Python programming language. And it creates a model of regression analysis through the machine learning function, and predicts the adjusted closing price among the stock price data in real time by fusing the real-time streaming function with the machine learning function.
Industrial WSNs need great performance and reliable communication. In industrial WSNs, cluster structure reduces the cost to form a network, and the reservation-based MAC is a more powerful and reliable protocol than the contention-based MAC. Depth-based TDMA assigns time slots to each sensor node in a cluster-based network and it works in a distributed manner. DB-TDMA is a type of depth-based TDMA and guarantees scalability and energy efficiency. However, it cannot allocate time slots in parallel and cannot perfectly avoid a collision because each node does not know the total network information. In this paper, we suggest an improved distributed algorithm to reduce the end-to-end delay of DB-TDMA, and the proposed algorithm is compared with DRAND and DB-TDMA.
Recently, there are many of studies on SWRL reasoning engine based on user-defined rules in a distributed environment using a large-scale ontology. Unlike the schema based axiom rules, efficient inference orders cannot be defined in SWRL rules. There is also a large volumet of network shuffled data produced by unnecessary iterative processes. To solve these problems, in this study, we propose a method that uses Map-Reduce algorithm and distributed in-memory framework to deduce multiple rules simultaneously and minimizes the volume data shuffling occurring between distributed machines in the cluster. For the experiment, we use WiseKB ontology composed of 200 million triples and 36 user-defined rules. We found that the proposed reasoner makes inferences in 16 minutes and is 2.7 times faster than previous reasoning systems that used LUBM benchmark dataset.
Our study is focused on a multiple-agent system to provide efficient collaborative work by automating the conference calling process with the help of intelligent agents. Automating the meeting scheduling requires a careful consideration of the individual official schedule as well as the privacy and personal preferences. Therefore, the automation of conference calling needs the distributed processing task where a separate calendar management process is associated for increasing the reliability and inherent parallelism. This paper describes in detail the design and implementation issues of a multiple-agent system for conference calling that allows the convener and participants to minimize their efforts in creating a meeting. Our system is based on the client-sewer model. In the sewer side, a scheduling agent, a negotiating agent, a personal information managing agent, a group information managing agent, a session managing agent, and a coordinating agent are operating. In the client side, an interface agent, a media agent, and a collaborating agent are operating. Agents use a standardized knowledge manipulation language to communicate amongst themselves. Communicating through a standardized knowledge manipulation language allows the system to overcome heterogeneity which is one of the most important problems in communication among agents for distributed collaborative computing. The agents of our system propose the dates on which as many participants as possible are available to attend the conference using the forward chaining algorithm and the back propagation network algorithm.
The Transactions of the Korea Information Processing Society
/
v.3
no.3
/
pp.617-630
/
1996
In this paper, a shared-concurrent file system (S-CFS) is designed and implemented using conventional disks as disk arrays on a Workstation Cluster which can be used as a small-scale server. Since it is implemented on UNIX operating systems, S_CFS is not only portable and flexible but also efficient in resource usage because it does not require additional I/O nodes. The result of the research shows that on small-scale systems with enough disks, the performance of the concurrent file system on transaction processing applications is bounded by the bottleneck of CPUs computing powers while the performance of the concurrent file system on massive data I/Os is bounded by the time required to copy data between buffers. The concurrent file system,which has been implemented on a Workstation Cluster with 8 disks,shows a throughput of 388 tps in case of transaction processing applications and can provide the bandwidth of 15.8 Mbytes/sec in case of massive data processing applications. Moreover,the concurrent file system has been dsigned to enhance the throughput of applications requirring high performance I/O by controlling the paralleism of the concurrent file system on user's side.
Journal of the Korean Data and Information Science Society
/
v.26
no.5
/
pp.1035-1045
/
2015
Recent studies in Big Data Analysis are showing promising results, utilizing the main memory for rapid data processing. In-memory computing technology can be highly advantageous when used with high-performing servers having tens of gigabytes of RAM with multi-core processors. The constraint in network in these infrastructure can be lessen by combining in-memory technology with distributed parallel processing. This paper discusses the research in the aforementioned concept applying to a test taxi hailing application without disregard to its underlying RDBMS structure. The application of IMDG technology in the application's backend API without restructuring the database schema yields 6 to 9 times increase in performance in data processing and throughput. Specifically, the change in throughput is very small even with increase in data load processing.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.