• Title/Summary/Keyword: 분산병렬시스템

Search Result 380, Processing Time 0.031 seconds

Resource Availability-based Multi Auction Model for Cloud Service Reservation and Resource Brokering System (자원 가용성 기반 다중 경매 모델을 이용한 서비스 예약형 클라우드 자원 거래 시스템)

  • Lee, Seok Woo;Kim, Tae Young;Lee, Jong Sik
    • Journal of the Korea Society for Simulation
    • /
    • v.23 no.1
    • /
    • pp.1-10
    • /
    • 2014
  • A cloud computing is one of a parallel and distributed computing. The cloud computing provides some service for user with virtual resources. However, a user's service request does not show a time pattern. As a result, each resource also shows a different availability at the same time. This difference affects a quality of service (QoS) and a resource selection for users. Therefore, we propose the resource availability-based multi auction model for cloud service reservation and resource brokering system. The proposed system is to select the proper resource provider based on the users' request. The proposal adopts the multi phase of the auction to transact resources. The system evaluates the available factor of each resource on the auction phase, and finally reserves the service on the adaptive queue. The proposed model shows the better performance than other existing method.

An Efficient Scheduling Method Taking into Account Resource Usage Patterns on Desktop Grids (데스크탑 그리드에서 자원 사용 경향성을 고려한 효율적인 스케줄링 기법)

  • Hyun Ju-Ho;Lee Sung-Gu;Kim Sang-Cheol;Lee Min-Gu
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.33 no.7
    • /
    • pp.429-439
    • /
    • 2006
  • A desktop grid, which is a computing grid composed of idle computing resources in a large network of desktop computers, is a promising platform for compute-intensive distributed computing applications. However, due to reliability and unpredictability of computing resources, effective scheduling of parallel computing applications on such a platform is a difficult problem. This paper proposes a new scheduling method aimed at reducing the total execution time of a parallel application on a desktop grid. The proposed method is based on utilizing the histories of execution behavior of individual computing nodes in the scheduling algorithm. In order to test out the feasibility of this idea, execution trace data were collected from a set of 40 desktop workstations over a period of seven weeks. Then, based on this data, the execution of several representative parallel applications were simulated using trace-driven simulation. The simulation results showed that the proposed method improves the execution time of the target applications significantly when compared to previous desktop grid scheduling methods. In addition, there were fewer instances of application suspension and failure.

Development of Network Based MT Data Processing System (네트워크에 기반한 MT자료의 처리기술 개발 연구)

  • Lee Heuisoon;Kwon Byung-Doo;Chung Hojoon;Oh Seokhoon
    • Geophysics and Geophysical Exploration
    • /
    • v.3 no.2
    • /
    • pp.53-60
    • /
    • 2000
  • The server/client systems using the web protocol and distribution computing environment by network was applied to the MT data processing based on the Java technology. Using this network based system, users can get consistent and stable results because the system has standard analysing methods and has been tested from many users through the internet. Users can check the MT data processing at any time and get results during exploration to reduce the exploration time and money. The pure/enterprised Java technology provides facilities to develop the network based MT data processing system. Web based socket communication and RMI technology are tested respectively to produce the effective and practical client application. Intrinsically, the interpretation of MT data performing the inversion and data process requires heavy computational ability. Therefore we adopt the MPI parallel processing technique to fit the desire of in situ users and expect the effectiveness for the control and upgrade of programing codes.

  • PDF

Analysis of Ultimate Bearing Capacity of Piles Using Artificial Neural Networks Theory (I) -Theory (인공 신경망 이론을 이용한 말뚝의 극한지지력 해석(I)-이론)

  • 이정학;이인모
    • Geotechnical Engineering
    • /
    • v.10 no.4
    • /
    • pp.17-28
    • /
    • 1994
  • It is well known that human brain has the advantage of handling disperse and parallel distributed data efficiently. On the basic of this fact, artificial neural networks theory was developed and has been applied to various fields of science successfully. In this study, error back propagation algorithm which is one of the teaching technique of artificial neural networks is applied to predict ultimate bearing capacity of pile foundations. For the verification of applicability of this system, a total of 28 data of model pile test results are used. The 9, 14 and 21 test data respectively out of the total 28 data are used for training the networks, and the others are used for the comparison between the predicted and the measured. The results show that the developed system can provide a good matching with model pile test results by training with data more than 14. These limited results show the possibility of utilizing the neural networks for pile capacity prediction problems.

  • PDF

Array Localization for Multithreaded Code Generation (다중스레드 코드 생성을 위한 배열 지역화)

  • Yang, Chang-Mo;Yu, Won-Hui
    • The Transactions of the Korea Information Processing Society
    • /
    • v.3 no.6
    • /
    • pp.1407-1417
    • /
    • 1996
  • In recent researches on thread partitioning algorithms break a thread at the long latency operation and merge threads to get the longer threads under the given constraints. Due to this limitation, even a program with little parallelism is partitioned into small-sized threads and context-swithings occur frequently. In the paper, we propose another method array localization about the array name, dependence distance(the difference of accessed element index from loop index), and the element usage that indicates whether element is used or defined. Using this information we can allocate array elements to the node where the corresponding loop activation is executed. By array localization, remote accesses to array elements can be replaced with local accesses to localized array elements. As a resuit,the boundaries of some threads are removed, programs can be partitioned into the larger threads and the number of context switchings reduced.

  • PDF

Development of Information Technology Infrastructures through Construction of Big Data Platform for Road Driving Environment Analysis (도로 주행환경 분석을 위한 빅데이터 플랫폼 구축 정보기술 인프라 개발)

  • Jung, In-taek;Chong, Kyu-soo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.3
    • /
    • pp.669-678
    • /
    • 2018
  • This study developed information technology infrastructures for building a driving environment analysis platform using various big data, such as vehicle sensing data, public data, etc. First, a small platform server with a parallel structure for big data distribution processing was developed with H/W technology. Next, programs for big data collection/storage, processing/analysis, and information visualization were developed with S/W technology. The collection S/W was developed as a collection interface using Kafka, Flume, and Sqoop. The storage S/W was developed to be divided into a Hadoop distributed file system and Cassandra DB according to the utilization of data. Processing S/W was developed for spatial unit matching and time interval interpolation/aggregation of the collected data by applying the grid index method. An analysis S/W was developed as an analytical tool based on the Zeppelin notebook for the application and evaluation of a development algorithm. Finally, Information Visualization S/W was developed as a Web GIS engine program for providing various driving environment information and visualization. As a result of the performance evaluation, the number of executors, the optimal memory capacity, and number of cores for the development server were derived, and the computation performance was superior to that of the other cloud computing.

Performance Analysis on Declustering High-Dimensional Data by GRID Partitioning (그리드 분할에 의한 다차원 데이터 디클러스터링 성능 분석)

  • Kim, Hak-Cheol;Kim, Tae-Wan;Li, Ki-Joune
    • The KIPS Transactions:PartD
    • /
    • v.11D no.5
    • /
    • pp.1011-1020
    • /
    • 2004
  • A lot of work has been done to improve the I/O performance of such a system that store and manage a massive amount of data by distributing them across multiple disks and access them in parallel. Most of the previous work has focused on an efficient mapping from a grid ceil, which is determined bY the interval number of each dimension, to a disk number on the assumption that each dimension is split into disjoint intervals such that entire data space is GRID-like partitioned. However, they have ignored the effects of a GRID partitioning scheme on declustering performance. In this paper, we enhance the performance of mapping function based declustering algorithms by applying a good GRID par-titioning method. For this, we propose an estimation model to count the number of grid cells intersected by a range query and apply a GRID partitioning scheme which minimizes query result size among the possible schemes. While it is common to do binary partition for high-dimensional data, we choose less number of dimensions than needed for binary partition and split several times along that dimensions so that we can reduce the number of grid cells touched by a query. Several experimental results show that the proposed estimation model gives accuracy within 0.5% error ratio regardless of query size and dimension. We can also improve the performance of declustering algorithm based on mapping function, called Kronecker Sequence, which has been known to be the best among the mapping functions for high-dimensional data, up to 23 times by applying an efficient GRID partitioning scheme.

Declustering of High-dimensional Data by Cyclic Sliced Partitioning (주기적 편중 분할에 의한 다차원 데이터 디클러스터링)

  • Kim Hak-Cheol;Kim Tae-Wan;Li Ki-Joune
    • Journal of KIISE:Databases
    • /
    • v.31 no.6
    • /
    • pp.596-608
    • /
    • 2004
  • A lot of work has been done to reduce disk access time in I/O intensive systems, which store and handle massive amount of data, by distributing data across multiple disks and accessing them in parallel. Most of the previous work has focused on an efficient mapping from a grid cell to a disk number on the assumption that data space is regular grid-like partitioned. Although we can achieve good performance for low-dimensional data by grid-like partitioning, its performance becomes degenerate as grows the dimension of data even with a good disk allocation scheme. This comes from the fact that they partition entire data space equally regardless of distribution ratio of data objects. Most of the data in high-dimensional space exist around the surface of space. For that reason, we propose a new declustering algorithm based on the partitioning scheme which partition data space from the surface. With an unbalanced partitioning scheme, several experimental results show that we can remarkably reduce the number of data blocks touched by a query as grows the dimension of data and a query size. In this paper, we propose disk allocation schemes based on the layout of the resultant data blocks after partitioning. To show the performance of the proposed algorithm, we have performed several experiments with different dimensional data and for a wide range of number of disks. Our proposed disk allocation method gives a performance within 10 additive disk accesses compared with strictly optimal allocation scheme. We compared our algorithm with Kronecker sequence based declustering algorithm, which is reported to be the best among the grid partition and mapping function based declustering algorithms. We can improve declustering performance up to 14 times as grows dimension of data.

Design and Implementation of Multiple View Image Synthesis Scheme based on RAM Disk for Real-Time 3D Browsing System (실시간 3D 브라우징 시스템을 위한 램 디스크 기반의 다시점 영상 합성 기법의 설계 및 구현)

  • Sim, Chun-Bo;Lim, Eun-Cheon
    • The Journal of the Korea Contents Association
    • /
    • v.9 no.5
    • /
    • pp.13-23
    • /
    • 2009
  • One of the main purpose of multiple-view image processing technology is support realistic 3D image to device user by using multiple viewpoint display devices and compressed data restoration devices. This paper proposes a multiple view image synthesis scheme based on RAM disk which makes possible to browse 3D images generated by applying effective composing method to real time input stereo images. The proposed scheme first converts input images to binary image. We applies edge detection algorithm such as Sobel algorithm and Prewiit algorithm to find edges used to evaluate disparities from images of 4 multi-cameras. In addition, we make use of time interval between hardware trigger and software trigger to solve the synchronization problem which has stated ambiguously in related studies. We use a unique identifier on each snapshot of images for distributed environment. With respect of performance results, the proposed scheme takes 0.67 sec in each binary array. to transfer entire images which contains left and right side with disparity information for high quality 3D image browsing. We conclude that the proposed scheme is suitable for real time 3D applications.

Reconfigurable Architecture Design for H.264 Motion Estimation and 3D Graphics Rendering of Mobile Applications (이동통신 단말기를 위한 재구성 가능한 구조의 H.264 인코더의 움직임 추정기와 3차원 그래픽 렌더링 가속기 설계)

  • Park, Jung-Ae;Yoon, Mi-Sun;Shin, Hyun-Chul
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.34 no.1
    • /
    • pp.10-18
    • /
    • 2007
  • Mobile communication devices such as PDAs, cellular phones, etc., need to perform several kinds of computation-intensive functions including H.264 encoding/decoding and 3D graphics processing. In this paper, new reconfigurable architecture is described, which can perform either motion estimation for H.264 or rendering for 3D graphics. The proposed motion estimation techniques use new efficient SAD computation ordering, DAU, and FDVS algorithms. The new approach can reduce the computation by 70% on the average than that of JM 8.2, without affecting the quality. In 3D rendering, midline traversal algorithm is used for parallel processing to increase throughput. Memories are partitioned into 8 blocks so that 2.4Mbits (47%) of memory is shared and selective power shutdown is possible during motion estimation and 3D graphics rendering. Processing elements are also shared to further reduce the chip area by 7%.