• Title/Summary/Keyword: 분별학습

Search Result 49, Processing Time 0.024 seconds

분별학습에 기반한 전화 숫자음 음성인식

  • Han, Mun-Seong
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.5 no.2
    • /
    • pp.7-17
    • /
    • 2001
  • 음성인식 시스템이 있어서 현재 가장 널리 사용되고 있는 Hidden Markov Model(HMM)은 확률 모델을 기반한 것으로 데이터에 대한 통계처리를 학습과정으로 하고 있다. 한국어 연속 숫자음에 대한 음성인식은 고립 숫자음 인식과는 달리 충분한 학습데이터만으로는 만족할 만한 결과를 가져오지 못한다. 이 논문에서는 연속 숫자음 음성인식에 잇어서 비슷하게 발음되는 숫자음과 같은 숫자에 대해 다양하게 발음되는 숫자음에 대해 HMM의 한계를 제시하고 그 해결채으로 Discriminant 학습의 적용방법을 제시한다. 연속 숫자음의 인식 시스템을 구현하는 데 있어서 인식률 낮은 부분에 Discriminant 학습을 적용하여 인식률을 대폭 향상시킨 실험결과를 제시한다.

  • PDF

Improved Automatic Lipreading by Multiobjective Optimization of Hidden Markov Models (은닉 마르코프 모델의 다목적함수 최적화를 통한 자동 독순의 성능 향상)

  • Lee, Jong-Seok;Park, Cheol-Hoon
    • The KIPS Transactions:PartB
    • /
    • v.15B no.1
    • /
    • pp.53-60
    • /
    • 2008
  • This paper proposes a new multiobjective optimization method for discriminative training of hidden Markov models (HMMs) used as the recognizer for automatic lipreading. While the conventional Baum-Welch algorithm for training HMMs aims at maximizing the probability of the data of a class from the corresponding HMM, we define a new training criterion composed of two minimization objectives and develop a global optimization method of the criterion based on simulated annealing. The result of a speaker-dependent recognition experiment shows that the proposed method improves performance by the relative error reduction rate of about 8% in comparison to the Baum-Welch algorithm.

A Study on Noisy Speech Recognition Using Discriminative Training for PMC Algorithm (PMC 방식에서의 분별적 학습을 이용한 잡음 음성인식에 관한 연구)

  • 정용주
    • The Journal of the Acoustical Society of Korea
    • /
    • v.19 no.2
    • /
    • pp.83-89
    • /
    • 2000
  • In this paper, we proposed a discriminative adaptation method for PMC algorithm and achieved improved speech recognition rate. For the adaptation, we adopted modified PMC(MPMC) which is a variant of PMC and discriminatively adapted the association factor for each mixture of the HMM in the MPMC. From the recognition experiments, the proposed method showed better recognition rate than the conventional PMC. Also, compared with STAR algorithm which is another model parameter compensation method, the proposed method showed superior performance when the SNR is very low and the adaptation data is not sufficient.

  • PDF

Korean Polysemy Word-Sense-Disambiguation using MoDu-Corpus (모두의 말뭉치를 이용한 한국어 다의어 분별)

  • Shin, Joon-Choul;Lee, Ju-Sang;Ock, Cheol-Young
    • Annual Conference on Human and Language Technology
    • /
    • 2020.10a
    • /
    • pp.205-210
    • /
    • 2020
  • 한국어 자연어처리 분야가 발달하면서 동형이의어 분별을 한 단계 넘어선 다의어 분별의 중요성이 점점 상승하고 있다. 최근에 다의어가 태깅된 "모두의 말뭉치"가 발표되었고, 이 말뭉치는 다의어가 태깅된 최초의 공개 말뭉치로써 다의어 연구가 본격적으로 진행될 수 있음을 의미한다. 본 논문에서는 이 말뭉치를 학습하여 작동하는 다의어 분별의 초기 모델을 제시하며, 이 모델의 실험 결과는 차후 연구를 위한 비교 기준점이 될 수 있다. 이 모델은 딥러닝을 사용하지 않은 통계형으로 개발되었고, 형태소분석과 동형이의어 분별은 기존의 UTagger로 해결하고 말뭉치 자원 외에도 UWordMap을 사용하여 다의어 분별을 보조하였다. 이 모델의 정확률은 약 87%이며, 다의어 분별 전에 형태소분석 또는 동형이의어 분별 단계에서 오류가 난 것을 포함한다. 현재까지 공개된 이 말뭉치는 오직 명사만 다의어 주석이 있기 때문에 명사만 정확률 측정 대상이 되었다. 이 연구를 통하여 다의어 분별의 어려움과, 다의어 분별에는 동형이의어 분별과는 다른 방법이 필요하다는 것을 확인할 수 있었다.

  • PDF

Closeness Discrimination through Sentence Analysis in SNS (SNS에서의 문장 분석을 통한 친밀도 분별)

  • Ko, YongSeok;Lee, Hyun Ah
    • Annual Conference on Human and Language Technology
    • /
    • 2012.10a
    • /
    • pp.219-223
    • /
    • 2012
  • 인간관계 유지와 새로운 관계 형성을 지원하는 다양한 소셜 네트워크가 각광을 받으면서 사용자간 친밀도 분석에 대한 연구가 활발히 진행되고 있다. SNS에서 구성되는 사용자 개인 정보와 컨텐츠 공유 및 기타 활동에 대한 정보는 사용자의 특징을 파악할 수 있는 유용한 정보가 된다. 이러한 정보는 추천과 같은 여러 가지 서비스에서 사용될 수 있으며, 특히 사용자간 친밀도 분석을 통한 친구 추천에서 유용하게 사용된다. 기존 친밀도 분석 연구에서는 사용자간 프로필 유사도와 메시지 교환수 같은 양적 정보를 사용해 왔다. 본 논문에서는 사용자간 대화 내용을 분석한 내용적 정보를 친밀도 분석에 반영하기 위한 방법을 제안한다. 학습 데이터를 활용하여 구축된 친밀도 분별 시스템에서는 감탄사, 종결어미, 선어말어미, 이모티콘, 문장 길이의 내용적 자질 정보의 사용으로 기존 양적 정보 사용과 유사한 수준의 친밀도 분별 성능을 얻을 수 있었으며, 양적 정보와 내용적 정보를 동시 사용한 경우 소폭의 성능 향상을 얻었다.

  • PDF

Prediction of microRNA Targets and Discrimination of microRNA Regulatory Mechanisms using Multilayer Perceptron Neural Network (다층 퍼셉트론 신경망을 이용한 microRNA의 목표 유전자 예측 및 조절 메커니즘 분별)

  • Lee, Min-Su;Nam, Jin-Wu;Zhang, Byoung-Tak
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2007.06b
    • /
    • pp.36-40
    • /
    • 2007
  • miRNA 유전체학의 중요한 이슈로 miRNA가 조절하는 목표 유전자를 예측하는 작업과 miRNA가 목표 유전자를 조절하는 메커니즘이 무엇인지 규명하는 것을 들 수 있다. 본 논문에서는 생물학적 특징들과 다층 퍼셉트론 신경망을 이용하여 miRNA의 목표 유전자를 예측하고 해당 miRNA 조절 메커니즘 타입을 분별해주는 시스템을 제안하고 실제 데이터를 사용하여 그 성능을 평가한다. 실험적으로 검증된 데이터를 사용하여 제안 시스템을 평가해본 결과, 다층 퍼셉트론 신경망을 사용할 경우 84.63%의 정확도로 miRNA의 목표 유전자를 예측할 수 있었고, 87.90%의 정확도로 miRNA가 목표 유전자를 조절하는 메커니즘을 분별할 수 있었다. 학습 데이터가 충분히 많아진다면 제안 시스템의 예측 성능은 더욱 높아질 것으로 예상된다.

  • PDF

Robust Feature Parameter for Implementation of Speech Recognizer Using Support Vector Machines (SVM음성인식기 구현을 위한 강인한 특징 파라메터)

  • 김창근;박정원;허강인
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.41 no.3
    • /
    • pp.195-200
    • /
    • 2004
  • In this paper we propose effective speech recognizer through two recognition experiments. In general, SVM is classification method which classify two class set by finding voluntary nonlinear boundary in vector space and possesses high classification performance under few training data number. In this paper we compare recognition performance of HMM and SVM at training data number and investigate recognition performance of each feature parameter while changing feature space of MFCC using Independent Component Analysis(ICA) and Principal Component Analysis(PCA). As a result of experiment, recognition performance of SVM is better than 1:.um under few training data number, and feature parameter by ICA showed the highest recognition performance because of superior linear classification.

Improvement of Korean Homograph Disambiguation using Korean Lexical Semantic Network (UWordMap) (한국어 어휘의미망(UWordMap)을 이용한 동형이의어 분별 개선)

  • Shin, Joon-Choul;Ock, Cheol-Young
    • Journal of KIISE
    • /
    • v.43 no.1
    • /
    • pp.71-79
    • /
    • 2016
  • Disambiguation of homographs is an important job in Korean semantic processing and has been researched for long time. Recently, machine learning approaches have demonstrated good results in accuracy and speed. Other knowledge-based approaches are being researched for untrained words. This paper proposes a hybrid method based on the machine learning approach that uses a lexical semantic network. The use of a hybrid approach creates an additional corpus from subcategorization information and trains this additional corpus. A homograph tagging phase uses the hypernym of the homograph and an additional corpus. Experimentation with the Sejong Corpus and UWordMap demonstrates the hybrid method is to be effective with an increase in accuracy from 96.51% to 96.52%.

Named Entity Recognition based on CRF reflecting relative weight (상대적 가중치 자질을 반영한 CRF 기반의 개체명 인식)

  • Jeong, Jin-Wook
    • 한국어정보학회:학술대회논문집
    • /
    • 2017.10a
    • /
    • pp.338-339
    • /
    • 2017
  • 본 논문은 개체명 인식을 위해 CRF 모델을 이용해 분류를 수행했다. 개체명 후보를 개체명으로 식별에서 중의성 문제가 필요하다. 본 논문에서는 이러한 중의성 문제 해결을 위해 학습 셋으로부터 패턴과 형태적 특성을 고려해 개체명 후보를 최대로 선택하고 선택된 개체명 후보의 중의성과 정확도를 높이기 위해 주변의 문맥 자질과 분별 확률 모델인 CRF를 이용해 중의성 문제를 해결한다.

  • PDF

Statistical Word Sense Disambiguation based on using Variant Window Size (가변길이 윈도우를 이용한 통계 기반 동형이의어의 중의성 해소)

  • Park, Gi-Tae;Lee, Tae-Hoon;Hwang, So-Hyun;Lee, Hyun Ah
    • Annual Conference on Human and Language Technology
    • /
    • 2012.10a
    • /
    • pp.40-44
    • /
    • 2012
  • 어휘가 갖는 의미적 중의성은 자연어의 특성 중 하나로 자연어 처리의 정확도를 떨어트리는 요인으로, 이러한 중의성을 해소하기 위해 언어적 규칙과 다양한 기계 학습 모델을 이용한 연구가 지속되고 있다. 의미적 중의성을 가지고 있는 동형이의어의 의미분별을 위해서는 주변 문맥이 가장 중요한 자질이 되며, 자질 정보를 추출하기 위해 사용하는 문맥 창의 크기는 중의성 해소의 성능과 밀접한 연관이 있어 신중히 결정되어야 한다. 본 논문에서는 의미분별과정에 필요한 문맥을 가변적인 크기로 사용하는 가변길이 윈도우 방식을 제안한다. 세종코퍼스의 형태의미분석 말뭉치로 학습하여 12단어 32,735문장에 대해 실험한 결과 용언의 경우 평균 정확도 92.2%로 윈도우를 고정적으로 사용한 경우에 비해 향상된 결과를 보였다.

  • PDF