• Title/Summary/Keyword: 분무 화염

Search Result 128, Processing Time 0.027 seconds

A Study on Diesel Spray and Flame by Rapid Compression Machine (급속압축장치에 의한 디이젤 분무 , 화염의 연구)

  • 안수길
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.19 no.1
    • /
    • pp.40-45
    • /
    • 1983
  • The paper describes an experimental investigation of axisymmetric diesel spray and flame which is held in rapid compression machine (RCM) with electromagnetic single injection nozzle. The axisymmetric diesel spray and flame are taken with high speed photograph and analysis it with image processor. The data presented include fuel concentration of spray, flame temperature, soot concentration of flame in axial and radial direction at a moment and compared it with each other.

  • PDF

A Study on Measurement of Premixed Spray Flame using Cross-correlation PIV (상호상관 PIV를 이용한 예혼합 분무화염의 계측에 관한 연구)

  • Yang Young-Joon;Kim Bong-Hwan
    • Journal of Energy Engineering
    • /
    • v.14 no.4 s.44
    • /
    • pp.259-267
    • /
    • 2005
  • In an attempt to elucidate combustion mechanism or premixed spray flame in detail, both the enlarged photographing, which was performed for spray cross-sectional images of premixed spray flame, and the cross-correlation PIV, which was performed for consecutive time-series images to obtain instantaneous two dimensional flow field, were applied. This study indicated that CW laser as well as pulse laser could be applied for PIV. Furthermore, the results of cross-correlation PIV, which was self-made PIV program, was shown in good agreement with those of PDA. Therefore, it was verified that cross-correlation PIV using CW laser in this study could be effectively used for observing structure of premixed spray flame.

GO$_2$/Kerosene를 추진제로 하는 동축 인젝터의 화염 부상 특성에 관한 실험적 연구

  • Moon, Il-Yoon;Kim, Yoo;Park, Hee-Ho;Kim, Sun-Jin
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 1999.04a
    • /
    • pp.4-4
    • /
    • 1999
  • 최근 충남대에서는 다양한 추진제와 연소 조건으로 액체로켓 연소 실험이 진행되고 있으며 그에 비례하여 많은 사고들이 발생하고 있다. 한 예로 GO$_2$/kerosene을 추진제로 하는 노즐삭마 시험용 로켓엔진(추력 1001bf, 연소실 압력 600psia) 개발 중에 화염이 인젝터면에 형성되어 인젝터면을 손상시키는 사고를 여러 번 경험하게 되었다. 본 연구는 인젝터 손상의 원인을 규명하여 안정적인 인젝터 설계에 도움을 주기 위한 목적으로 실험용 동축 인젝터를 제작하여 화염 부상 특성을 실험적으로 연구하였다. 사용된 인젝터는 연료인 Kerosene을 접선형 선회기로부터 90$^{\circ}$의 원뿔 각을 가지고 분무되도록 설계하였으며, 그 주위로 산하제인 GO$_2$가 연소실의 축방향에 수평하게 분무되도록 설계하였다. 2-유체 동축 인젝터의 난류 확산 화염에서 연료와 산화제의 혼합은 화염 특성을 결정하는 주요 변수이므로 인젝터로부터 분무되는 추진제간의 유량을 변화시켜 화염 부상 특성을 연구하였다.

  • PDF

원통형 연소실내 분무된 액적군의 화염전파에 관한 수치해석

  • 이영집;백승욱;김택영
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.14 no.4
    • /
    • pp.899-906
    • /
    • 1990
  • 본 연구에서는 자동차엔진에 대한 응용의 일환으로써 밀폐된 축대칭 연소실내 의 정지하고 있는 공기에 분사에 의해 형성된 분무액적들을 점화원을 이용하여 화염을 생성시키고 그에 따른 화염전파 및 낮은 마하수에서의 유동현상과 이상간의 물리적 관 계를 다차원 유한차분법에 의한 물리적인 지배방정식의 동시해법인 ALE(Arbitrary La- ngrangian Eulerian)방법으로 구성되어 있는 CONCHAS-code를 이용하여 해석하고, 연료 액적의 분사각도, 크기 및 연소실내 기체유동의 각속도의 변화에 의한 분무연소의 과 도적특성을 고찰하고자 한다.

미세물분무의 분사특성에 따른 n-Heptane 화염의 소화

  • 이경덕;김영수;신창섭
    • Proceedings of the Korean Institute of Industrial Safety Conference
    • /
    • 2000.11a
    • /
    • pp.118-123
    • /
    • 2000
  • 화재에 대한 소화방법으로서는 점화원의 냉각, 산화제 농도의 감소에 의한 화염의 질식 및 제거소화와 부촉매를 이용한 소화법이 있다. 이중 냉각소화방법은 주로 물을 사용하여 화재를 진압하고 있으나, 유류화재와 전기화재 등에서는 물보다 할론소화약제가 효과적으로 사용되어 왔다. 그러나 할론 등 CFC 계통의 소화약제는 환경오염물질을 내포하며, 지구온난화지수와 오존파괴지수 등이 높아 전세계적으로 그 사용이 중단되고 있다. 이에 대한 대체 기술의 하나로 최근에 관심이 고조되기 시작한 소화기술은 분무 노즐을 이용한 미세물분무(water mist) 소화설비이다.(중략)

  • PDF

Experimental Study of Thermo-Flow Field in a Model Gas Turbine Combustor with Various Swirl Conditions (스월변화에 따른 모형 가스터빈 연소기의 열유동장의 실험적 연구)

  • Ryu, Song-Youl;Koo, Ja-Ye
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.30 no.4
    • /
    • pp.70-76
    • /
    • 2002
  • Characteristics of kerosine spray combustion were investigated at various swirl condition. PDPA(Phase Doppler Particle Analysis) was used to measure the droplet sizes and velocities. R-type(Platinum vs. Platinum-13%rhodium) thermocouple was used to measure the temperature of combustion flow field inside model combustor. A visualization of spray and flame was performed with still camera. As swirl number increases due to increase of swirl vane angle, the spray and the flame were developed to radial direction rapidly. When swirl number is small, the configuration of flame is cone type, but swirl number is large, the configuration of flame is cylindrical type due to enhanced mixing by the transport of swirl momentum.

A Study on the Extinguishing Performance of Water Mist with Additives (첨가제가 혼합된 미세물분무의 소화성능에 관한 연구)

  • 이경덕;신창섭
    • Fire Science and Engineering
    • /
    • v.16 no.1
    • /
    • pp.1-7
    • /
    • 2002
  • Halogen-based fire suppressing agents have environmental problems because they cause the stratospheric ozone depletion and globe warming. Hence, fire suppression system using fine water mist became the center of interest as a substitution of halon. As a study about this, it is in progress to make the optimum droplet size by using water mist nozzles and to improve the extinguishing performance of water mist by using additives. Before this study, the extinguishing time of ethanol and n-heptane pool fire was measured with changing of water mist droplet size, flow density, discharge pressure, and fire size. In this study, on adding the additives to improve physical and chemical extinguishing performance of water mist, the extinguishing performance would evaluate and the optimum condition would find out. As a result, in case of ethanol pan 1 pool fire, the extinguishing time of the water mist by adding of 2.5 wt% NaCl and 0.3% AFFF got shorter 27% and 60% than the pure water mist. Adding of AFFF was to decrease the flame temperature by forming thin film on the fuel surface and to decrease the evaporation of n-heptane fuel. In case of NaCl, alkali salt crystals showed on the flame surface.

Fuel Concentration and Flame Temperature Distribution in Model Gas Turbine Combustor with Various Spray Angles (모형가스터빈 연소기에서 분무각 변화에 따른 연료농도 및 화염온도 분포)

  • Hwang, Jin-Seok;Byun, Yong-Woo;Seong, Hong-Gye;Koo, Ja-Ye;Kang, Jeong-Sik
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.36 no.10
    • /
    • pp.1011-1016
    • /
    • 2008
  • Jet-A spray and combustion were numerically analyzed in annular type combustor model using KIVA3V. The combustor geometry have 6 dilute holes. Swirl effect and thermal NO were considered in this investigation to analyze mixing and combustion characteristics. Fuel vapor, flame temperature, NO generation were investigated for various spray angle. As increase of spray angle, Jet-A vapor appeared uniformly in primary zone and evaporation rate was increased. Mixing between fuel vapor and ambient gas was enhanced as increase of spray angle. As a result, high temperature region appeared widely and thermal NO generation rate was increased.

Spray and Combustion Characteristics in Model Gas Turbine Combustor (모형 가스터빈 연소기에서의 분무 및 연소 특성)

  • Hwang, Jin-Seok;Koo, Ja-Ye;Seong, Hong-Gye;Kang, Jeong-Seek
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2007.11a
    • /
    • pp.381-386
    • /
    • 2007
  • Jet-A spray, evaporation and combustion were numerically analyzed in annular type model combustor using KIVA-3V. Liquid fuel's atomizing was affected by flow field near droplet. When cooling flow was not optimized, SMD was increased, and equivalence ratio was horizontally distributed in combustor's downstream. Flame spread out horizontally and separated in combustors downstream. Flame center was separated by cooling flow. Flame separation made local high temperature in downstream that caused NO increase.

  • PDF

2-Dimensional Unsteady Modeling of Spray Flame Formed in a Laminar Counterflow Field - Effects of Equivalence Ratio and Fuel - (층류 대향류장에 형성된 분무화염의 2차원 비정상 모델링 -당량비 및 연료종에 관한 영향-)

  • Hwang, Seung-Min;Chung, Jin-Do;Seo, Byung-Min;Kim, Young-Woo
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.31 no.10
    • /
    • pp.933-940
    • /
    • 2009
  • To evaluate characteristics in spray flame, laminar counterflow is investigated on the effects of equivalence ratio and fuel by a two-dimensional DNS (direct numerical simulation). For the gaseous phase, Eulerian mass, momentum, energy, and species conservation equations are solved. For the disperse phase, all individual droplets are calculated by the Lagrangian method without the parcel model. n-Decane ($C_{10}H_{22}$) and n-heptane ($C_7H_{16}$) is used as a liquid spray fuel, and a one-step global reaction is employed for the combustion reaction model. As equivalence ratio increases, the fuel ignites early and the high temperature region spreads wider. The peak value of temperature, however, tends to once increase and then decreases with increasing equivalence ratio. The decrease in the peak value of temperature for the higher equivalence ratio condition is caused by the cooling effect associated with droplet group combustion. Since the evaporation of n-heptane is early, the high temperature region spreads wider than ndecane, but the peak values of temperature for both n-heptane and n-decane is almost same.