• 제목/요약/키워드: 분무액적

검색결과 373건 처리시간 0.024초

연료액적의 Air-Assisted Breakup에 대한 수치해석적 연구 (A Numerical Study on Air-Assisted Breakup of Fuel Droplets)

  • 황상순
    • 한국분무공학회지
    • /
    • 제1권2호
    • /
    • pp.57-65
    • /
    • 1996
  • Breakup models are evaluated using the experimental drop trajectory ill this study. The experimental conditions corespond to Weber # 56, 260, 463. Computations are carried out using a modified KIVA-II program with 2 different breakup submodel(TAB and Wave breakup model) and dynamic drag model which the drag coefficient changes dynamically with distortion parameter. Results show that computation with wave breakup model represents the experimental drop trajectory better than that with TAB submodel. And result with wave breakup model shows similar breakup pattern to experimental breakup process. It is thought that in wave breakup model the small drops are shed from the parent drop throughout parcel lifetime such thai this modelling represents the real breakup process well.

  • PDF

초기 직경이 n-heptane 액적 연소 특성에 미치는 영향 (Influence of Initial Diameter on the Combustion Characteristics of n-heptane Droplet)

  • 서현규
    • 한국분무공학회지
    • /
    • 제18권2호
    • /
    • pp.94-99
    • /
    • 2013
  • The spherically-symmetric burning of an isolated droplet is a dynamic problem that involves the coupling of chemical reactions and multi-phase flow with phase change. For the improved understanding of these phenomena, this paper presents the numerical results on the n-heptane droplet combustion conducted at a 1 atm ambient pressure in three different initial droplet diameter ($d_0$). The main purpose of this study is to provide basic information of droplet burning, extinction and flame behavior of n-heptane and improve the ability of theoretical prediction of these phenomena. To achieve these, the numerical analysis was conducted in terms of normalized droplet diameter ($d/d_0$), flame diameter ($d_f$) and flame standoff ratio (FSR) under the assumptions that the droplet combustion can be described by both the quasi-steady behavior for the region between the droplet surface and the flame interface and the transient behavior for the region between the flame interface and ambient surrounding.

도데케인 연료액적의 초임계 상태 기화 특성 (Vaporization Characteristics of Dodecane Fuel Droplet in Supercritical Condition)

  • 고정빈;이관형;구자예;전창수;문희장
    • 한국분무공학회지
    • /
    • 제9권3호
    • /
    • pp.8-14
    • /
    • 2004
  • Characteristics of droplet vaporization at high ambient pressures and temperatures which are supercritical conditions is studied numerically by formulating one dimensional vaporization model in liquid dodecane and air. Modified Soave-Redlich-Kwong state equation is used to condider real gas effect. Non-ideal behavior of properties at near critical and supercritical conditions is considered in the high pressure condition. Characteristic spatial distribution of properties with various conditions of pressure and temperature is evaluated in order to understand vaporizing evolution.

  • PDF

분위기 조건이 Decane 액적의 Soot 생성에 미치는 영향 (Effect of Ambient Conditions on the Soot Generation of Decane Fuel Droplet)

  • 임영찬;서현규
    • 한국분무공학회지
    • /
    • 제19권4호
    • /
    • pp.211-215
    • /
    • 2014
  • The main purpose of this study is to provide basic information of droplet soot generation of decane fuel. To achieve this, this paper presents the experimental results on the decane droplet combustion conducted under various ambient pressure($P_{amb}$), and oxygen concentration($O_2$) conditions. At the same time, the experimental study was conducted in terms of soot volume fraction($f_v$) and its maximum value. Also, visualization of single fuel droplet was conducted by high resolution CCD camera and ambient pressure($P_{amb}$) and oxygen concentration($O_2$) was changed by control system. It was revealed that higher ambient pressure($P_{amb}$), and oxygen concentration($O_2$) enhanced the soot generation and improved the maximum soot volume fraction( $f_v$).

Methanol 연료 액적의 연소 특성에 관한 연구 (Study on the Combustion Characteristics of Methanol Fuel Droplet)

  • 서현규
    • 한국분무공학회지
    • /
    • 제19권3호
    • /
    • pp.109-114
    • /
    • 2014
  • The main purpose of this study is to provide basic information of droplet burning, extinction process and flame behavior of methanol fuel and improve the ability of theoretical prediction of these phenomena. For the improved understanding of these phenomena, this paper presents the experimental results on the methanol droplet combustion conducted under various initial droplet diameters ($d_0$), ambient pressure ($P_{amb}$), and oxygen concentration ($O_2$) conditions. To achieve this, the experimental study was conducted in terms of burning rate (K) with normalized droplet diameter ($d/d_0$), flame diameter ($d_f$) and flame standoff ratio (FSR) under the assumptions that the droplet combustion can be described by both the quasi-steady behavior for the region between the droplet surface and the flame interface and the transient behavior for the region between the flame interface and ambient surrounding.

고온 고압 유동장에서 햅탄 액적의 기화 특성 (Characteristics of Heptane Droplet Vaporization in High-Pressure and Temperature Flow Field)

  • 고정빈;구자예
    • 한국분무공학회지
    • /
    • 제9권4호
    • /
    • pp.83-89
    • /
    • 2004
  • Vaporization characteristics of a liquid heptane droplet in high-pressure and temperature flow field are numerically studied. Variable thermodynamic and transport properties and high-pressure effects are taken into account in order to consider real gas effects. Droplet Vaporization in convective environments was investigated on the basis of droplet vaporization in quiescent and convective environment. In quiescent environments, droplet lifetime is directly proportional to pressure at the subcritical temperature range but it is inversely proportional to pressure at the supercritical temperature range. In convective environment, droplet deformation becomes stronger by increasing Reynolds number due to increase of velocity while droplet deformation is relatively weak at a higher pressure for the same Reynolds number cases.

  • PDF

방해물이 존재하는 평판 위 충돌 액적 거동에 관한 연구 (A Study on the Behavior of an Impacting Droplet on a Wall Having Obstacles)

  • 양우종;강보선
    • 한국분무공학회지
    • /
    • 제17권1호
    • /
    • pp.27-34
    • /
    • 2012
  • In this paper an experimental study is presented to investigate the effect of a step edge and a stationary droplet on the dynamic behavior of impacting droplet on a wall. The main parameters are the distance from the edge and the center-to-center distance between two droplets. Photographic images are presented to show coalescence dynamics, shape evolution and contact line movement. The emphasis is on presenting the spreading length of droplet for the step edge and two coalescing droplets along their original centers. It is clarified that the droplet exhibits much different dynamic behavior depending on the location of the step edge. The momentum of impacting droplet was better transferred to the stationary droplet as the center- to-center distance between two droplets was reduced, which results in more spreading of coalescing droplet.

상압에서 부탄올 젤 연료액적의 증발특성 (Evaporation Characteristics of a Butanol Gel-Fuel Droplet in Atmospheric Pressure Condition)

  • 남시욱;김혜민
    • 한국분무공학회지
    • /
    • 제26권2호
    • /
    • pp.73-80
    • /
    • 2021
  • Evaporation characteristics of single butanol gel fuel were investigated in different mass ratios of gellant and ambient temperatures. Gel fuel was made by adding the pure water and hydroxypropylmethyl cellulose (HPMC) into the 1-butanol. Increase of viscosity was observed when the loading of HPMC increased. The evaporation process of gel droplet could be divided into three stages: droplet heating, micro-explosion and crust formation. Elevation of ambient temperature helped boost the evaporation in all experimental cases, but the effect was mitigated when the mass ratio of HPMC increased. Increase of HPMC weight ratio reduced the evaporation rate.

횡단유동으로 분사하는 이유체노즐의 기체-액체비에 따른 분무특성 (Characteristics of Air-assist Spray Injected into Cross-flow with Various Gas-liquid Ratio)

  • 조우진;이인철;이봉수;이효원;구자예
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2007년도 제29회 추계학술대회논문집
    • /
    • pp.159-162
    • /
    • 2007
  • 아음속 유동 내에 수직으로 분사된 액체제트의 액적분열 분포 특성을 알아보기 위해 이유체 노즐을 사용하여 실험적으로 연구하였다. 노즐은 L/d=3의 외부혼합형으로 공기와 액체의 비를 0 ${\sim}$ 59.4%까지 변화시키면서 분사하였다. 분무형상의 변화를 이미지화 하였으며 분무의 궤적과 액주의 형상을 관찰하였다. 액체제트 분열의 단면분포 특성을 PDPA를 사용하여 측정하였며 SMD, 액적속도, 그리고 체적유속을 측정하였다. 그 결과 노즐로 공급되는 공기의 양이 많아질수록 Y/d방향의 관통거리는 증가하였고 액적의 미립화는 가속화되는 것을 관찰할 수 있었다.

  • PDF

압력 선회 분사기 분무모델에서 액적분포함수 영향 고찰 (A Study of Effect of Droplet Distribution Functions in Modeling of Pressure-Swirl Atomizer)

  • 문윤완;설우석;윤영빈
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2007년도 제28회 춘계학술대회논문집
    • /
    • pp.117-120
    • /
    • 2007
  • 본 연구는 액체로켓엔진에 장착되는 압력 선회 분사기의 분무 모델에 대해 연구하였고, 특히 액적분포함수에 대한 영향을 고찰하였다. KIVA에 기존의 함수인 $X^2$와 Rosin-Rammler 및 수정된 Rosin-Rammler 함수에 대해 이론적으로 고찰하였고, 액체로켓엔진에 장착되는 압력 선회 분사기와 유사한 경우에 적용하였으며, Rosin-Rammler 분포가 액체로켓엔진에 장착되는 압력 선회 분사기의 분무 특성에 잘 부합되는 것을 파악할 수 있었다.

  • PDF