• Title/Summary/Keyword: 분무액적

Search Result 373, Processing Time 0.031 seconds

A Study on the Flow Characteristics of Gasoline Spray across the Suction Air Stream (흡입공기분류를 가로지르는 가솔린 분무의 유동 특성 연구)

  • 김원태;강신재;노병준
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.7 no.9
    • /
    • pp.63-74
    • /
    • 1999
  • When a fuel was injected with opening the intake valve of a port fuel injection engine, the spray atomization and flow characteristics in the intake port have a strong influence on the mixture formation of a combustion chamber. Thus , this study was to clarify the spray flow characteristics of the air-assist gasoline spray with fine dropkets across the suction air stream in model intake port. For the simulated opening intake valve in port, suction air stream was varied to 10m/s ∼30m/s. And fuel pressur ewas fixed to 300kPa, but air assist pressure was varied to 0∼25kPa for a vairable spray conditions. Spray flow trajectory was investigated by means of laser sheet visualization and the measurements of droplet sizes and velocities were made by PDPA system. Measured droplets within the spray flow field were subdivided into five size groups and then, the flow characteristics of droplet size groups were investigated to the spray across a suction air stream.

  • PDF

Development of Hybrid Model for Simulating of Diesel Spary Dynamics (디젤분무의 모사를 위한 혼합 모델의 개발)

  • 김정일;노수영
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.9 no.1
    • /
    • pp.8-19
    • /
    • 2001
  • A number of atomization and droplet breakup models have been developed and used to predict the diesel spray characteristic. Most of these models could not provide reasonable computational result of the diesel spray characteristic because they have only considered the primary breakup. A hybrid model is, therefore, required to develop by considering the primary and secondary breakup of liquid jet. according to this approach, wave breakup(WB) model was used compute the primary breakup of the liquid jet and droplet deformation and breakup(DDB) model was used for the secondary breakup of droplet. Development of hybrid model by using KIVA-II code was performed by comparing with the experimental data of spray tip penetration and SMD from the literature. A hybrid model developed in this study could provide the good agreement with the experimental data of spray tip penetration. The prediction results of SMD were in good agreement between 0.5 and 1.0 ms after the start of injection. Numerical results obtained by the present hybrid model have the good agreement with the experimental data with the breakup time constant in WB model of 30, and DDB model constant Ck of 1.0 when the droplet becomes less than 95% of maximum droplet diameter injected.

  • PDF

Effect of Swirl Angle on the Atomization Characteristics in Twin-Fluid Nozzle with Dual Air Supplying (이중공기공급 2-유체 노즐의 선회각 변화에 따른 미립화 특성)

  • Woo, J.M.;Kim, E.S.;Kim, D.J.;Lee, J.K.
    • Journal of ILASS-Korea
    • /
    • v.13 no.3
    • /
    • pp.126-133
    • /
    • 2008
  • The atomization characteristics of the dual air supplying two-fluid nozzle were investigated experimentally using PIV and PDA systems. The twin-fluid nozzle is composed of three main parts: the feeding injector to supply fluid that is controlled by a PWM (pulse-width modulation) mode, the adaptor as a device with the ports for supplying the carrier and assist air, and the main nozzle to produce sprays. The main nozzle has the swirler with four equally spaced tangential slots, which gives the injecting fluid an angular momentum. The swirl angle in the swirler varied with $0^{\circ}$, $30^{\circ}$, $60^{\circ}$ and $90^{\circ}$. The ratios of carrier air to assist air and ALR (total air to liquid) were 0.55 and 1.23, respectively. The macroscopic behavior of the spray was investigated using PIV system, and the AMD and SMD distributions of the sprays were measured using PDA system. As a result, the SMD distribution increases along the radial distance, and it decreases with the increase of swirl angle in swirler.

  • PDF

An Experimental Study on the Drop Size of a Twin-Fluid Swirl Jet Nozzle (이유체 선회분사 노즐의 액적크기에 관한 실험적 연구)

  • Oh, J.H.;Kim, W.T.;Kang, S.J.;Rho, B.J.
    • Journal of ILASS-Korea
    • /
    • v.1 no.1
    • /
    • pp.21-27
    • /
    • 1996
  • This experimental study was to investigate spray angles and drop sizes in an external mixed twin-fluid swirl jet nozzle. Twin-fluid swirl jet nozzle with swirlers designed four swirl angles such as $0^{\circ},\;22.5^{\circ},\;45^{\circ},\;64.2^{\circ}$ was employed. A PDA system was utilized for the measurement of drop size and mean velocity. Water and air were used as the working fluids in this experiment. The mass flow rate of water was fixed as 0.03 kg/min, and air flow rates were controlled to have the air/liquid mass ratio from 1.0 to 6.0. As a result, swirl angle controlled to spray angles and drop sizes. It was found that swirl angle was increased with spray angle and with decreased SMD. However, the effect of swirl angle was reduced at large air/liquid mass ratio(Mr=6.0).

  • PDF

A Numerical Study on Evaporation and Combustion of Liquid Spray (액체분무의 증발 및 연소에 관한 수치적 연구)

  • 정인철;이상용;백승욱
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.15 no.6
    • /
    • pp.2073-2082
    • /
    • 1991
  • The vaporization and combustion of liquid spray in a cylindrical shape combustor was studied numerically. Mixture of liquid drops and air was assumed to be ejected from the center-hole and assisting air from the concentric annulus with swirling. Eulerian-Lagrangian scheme was adopted for the two phase calculation, and the interactions between the phases were considered with the PSIC model. Also adopted were the infinite conductivity model for drop vaporization, the equation of Arrhenius and the eddy break-up model for reaction rate, and the k-epsilon model for turbulence calculations. Gas flow patterns, drop trajectories and contours of temperature and mass fractions of the gas species were predicted with swirl number, drop diameter, and equivalence ratio taken as parameters. Calculations show that the vaporization and the consequent combustion efficiency enhance with the increase of the swirl number and/or with the decrease of drop size, and the higher maximum temperature is attained with the higher equivalence ratio.

Impinging Atomization of Intermittent Gasoline Sprays (간헐 가솔린 분무의 충돌에 의한 미립화 촉진)

  • 원영호;임치락
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.6 no.5
    • /
    • pp.174-181
    • /
    • 1998
  • Experimental and analytical studies are presented to characterize the break-up mechanism and atomization processes of the intermittent- impinging-type nozzle. Gasoline jets passing through the circular nozzle with the outlet diameter of 0.4mm and the injection duration of 10ms are impinged on each other. The impingement of fuel jets forms a thin liquid sheet, and the break-up of the liquid sheet produces liquid ligaments and droplets subsequently. The shape of liquid sheets was visualized at various impinging velocities and angles using the planer laser induced fluorescence (PLIF) technique. Based on the Kelvin-Helmholtz wave instability theory, the break-up length of liquid sheets and the droplet diameter are obtained by the theoretical analysis of the sheet disintegration. The mean diameter of droplet is also estimated analytically using the liquid sheet thickness at the edge and the wavelength of the fastest growing wave. The present results indicate that the theoretical results are favorably agreed with the experimental results. The size of droplets decreases after the impingement as the impinging angle or the injection pressure increase. The increment of the injection pressure is more effective than the increment of the impinging angle to reduce the size of droplets.

  • PDF

The synthesis of silver powders with narrow particle distribution and spherical shape prepared by spray pyrolysis (분무열분해법에 의한 입자분포가 좁은 구형의 은 분말 제조)

  • 이교광;강윤찬;김중현;박희동
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2003.11a
    • /
    • pp.112-112
    • /
    • 2003
  • 은분말은 전자 산업에 있어 후막 도체 페이스트의 제조를 위해 사용되어지고 있다. 후막 페이스트는, 기재상에 스크린 프린트되고, 전도성의 회로 패턴을 형성한다. 이러한 회로는, 다음에 건조, 소성되고 액체 유기 비이클을 휘발 시키고, 그리고 은 입자를 소결시킨다. 프린트 회로 기술은 점점 고밀도이면서 더욱 정밀한 전자 회로를 요구하고 있다. 이러한 요건에 적합하기 위하여 도선은 폭이 점점 좁아지고, 선의 사이의 거리가 점점 작아지고 있다. 고밀도가 조밀하게 꽉 찬 좁은 선을 위하여 은 분말은 가능한 크기가 단일하고 구형의 형태를 가져야 한다. 현재 금속 분말을 제조하는 방법으로는 화학적 환원법, 무화 또는 분쇄, 열분해법등의 물리적 과정 및 전기 화학적 과정 등이있다. 본 연구에서는 입도 분포가 좁은 구형의 은 분말을 제조하기 위하여 기상법의 하나인 분무열분해법을 도입하였다. 또한 싸이클론을 사용하므로 큰 액적들을 걸러 입도 분포를 줄였다. 은 분말의 프리커서로써는 AgNO$_3$를 사용하였고 반응기의 온도는 $700^{\circ}C$에서 100$0^{\circ}C$까지 변화시켰으며 운반기체로써는 5%H$_2$ 혼합가스로 20L/min에서 80L/min 변화시켜 은 분말을 제조하였다. 또한 용액의 농도는 0.2M에서 1.0M까지 변화시켰다. 용액의 농도가 0.2M이고 운반기체의 유랑이 40L/min일 경우 완전한 은 상이 관찰되었고, 입자의 크기는 약 600nm였다.

  • PDF

Numerical Analysis of Effects of Water Mist Injection Characteristics on Cooling Performance in Heated Chamber (미분무수 분사 특성에 따른 가열 챔버 내 냉각 성능 수치 해석)

  • Sumon, S.M.;Lee, S.W.
    • Journal of ILASS-Korea
    • /
    • v.17 no.2
    • /
    • pp.64-70
    • /
    • 2012
  • Water mist fire suppression systems which use relatively small droplets of water with high injection pressure are increasingly being used in wider applications because of its greater efficiency, low flooding damage and low toxicity. However, the performance of the system significantly relies on the water mist characteristics and it requires better understanding of fire suppression mechanism of water mist. In the present study, computational fluid dynamics simulations were carried out to investigate cooling performance of water mist in heated chamber. The gas phase was prepared with natural convection heat transfer model for incompressible ideal case and then the effects of water mist injection characteristics on cooling capabilities were investigated upon the basis of the pre-determined temperature field. For the simulation of water mist behavior, Lagrangian discrete phase model was employed by using a commercial code, FLUENT. Smaller droplet sizes, greater injection angles and higher flow rates provided relatively higher cooling performance.

A Study on the Spray Behavior of Air-Assist Type Gasoline Fuel Injector in Intake Port (공기보조형 가솔린 연료분사기의 흡기포트내 연료분무 거동에 관한 연구)

  • Rho, Byung-Joon;Kang, Shin-Jae;Kim, Won-Tae
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.23 no.1
    • /
    • pp.92-103
    • /
    • 1999
  • The fuel spray behavior in the intake port of an electronic control port irijection gasoline engine has a strong influence on engine performance, exhaust emission and fuel consumption. Thus, in this study, fuel spray behavior and flow characteristics of the air assist gasoline spray injected into a suction flow in a simulated rectangular intake port have boon investigated. Macro-behavior of spray characteristics was investigated by means of visualization and the measurements of SMD and velocity were made by PDPA. For analysis the flow field with droplets size, droplets are classified five droplets size groups. As a result, the normal distance of suction flow increasing, the relatively large droplets distribution and SMD increase because small droplets easily follow suction flow. Near impinging wail, after impinging against the wall, secondary atomized small droplets of D < $30{\mu}m$ bound from the wall. And the increasement of suction flow progress to the large droplets of D > $100{\mu}m$ distribution. Therefore, SMD are apparently increased near impinging wall, Z/d = 9.0.

An Experimental Study on the Drop Size and the Combustion Characteristics around the Bluff-body (보염기 주위의 연료액적크기와 연소특성에 관한 실험적 연구)

  • Hwang, S.H.;Kim, D.J.
    • Journal of ILASS-Korea
    • /
    • v.8 no.3
    • /
    • pp.41-48
    • /
    • 2003
  • This work was performed to investigate the distribution of the fuel droplet size around the bluff-body and the combustion characteristics. The bluff-body is used fur the purpose of increasing the combustion efficiency by stabilizing the flame. Diameters of the bluff-body in this experiment are 6, 8, and 10mm and the impingement angles are $30^{\circ},\;60^{\circ}\;and\;90^{\circ}$. The measurement points were at the distances of 20 and 30 mm axially from the nozzle. The geometry of the bluff-body influenced the spray shape and the combustion characteristics. The SMD was acquired by image processing technique (PMAS), and the mean temperatures were measured by thermocouple. In the condition of ${\theta}=60^{\circ}$, the values of SMD are not greatly varied compared to the other conditions. As the angle of bluff-body was increased, the high temperature region was wider along radial direction. When the air-fuel ratio was larger than 5.2, the NOx concentration was decreased, and an increase in the diameter of the bluff-body decreased the NOx of emission.

  • PDF