• Title/Summary/Keyword: 분말 소화 장치

Search Result 7, Processing Time 0.021 seconds

Development of a Remote Fire-Extinguishing Monitoring System using a Fixed Aerosol (고체에어로졸을 이용한 원격 모니터링 소화시스템 개발)

  • Kim, Gwan-Hyung;Sin, Dong-Suk;Jeong, Young-Hwan;Oh, Am-Suk
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2014.10a
    • /
    • pp.904-905
    • /
    • 2014
  • 일반 가정이나 산업 현장에서 화재가 발생할 경우 인명 피해와 재산 피해가 막대하다고 할 수 있다. 이러한 막대한 피해를 막기 위하여 국가에서는 소화방재를 위한 법적 검토와 소방 안전교육 및 피난훈련을 실시하고 있다. 그러나 대부분의 화제 현장에서의 초기 대응은 대부분 분말소화기에 의존하고 있는 실정이다. 현재 새롭게 개발된 청정 소화약제를 활용한 고체에어로졸(fixed aerosol) 소화장치를 개발하여 화재 방지시스템을 개발하고 있다. 본 논문에서는 고체에어로졸 소화장치의 활용에 있어서 불꽃감지센서 및 열 감지센서의 데이터를 활용할 수 있고, 화재 발생 현장에 대한 현장 데이터를 원격지에서 모니터링 할 수 있는 유무선통신기반의 제어기 모듈을 개발하여 원격지 화재 현장을 보다 효율적으로 대응할 수 있는 시스템을 개발하고자 한다.

  • PDF

Characteristics of Fixed Aerosol Auto Fire-Extinguishing Systems (고체에어로졸 자동소화장치 특성)

  • Choi, Byoung-O;Hong, Chang-Su;Kwon, Seong-Won;Park, Sun-Gyu
    • Proceedings of the Korea Institute of Fire Science and Engineering Conference
    • /
    • 2008.11a
    • /
    • pp.277-282
    • /
    • 2008
  • We developed fixed aerosol auto fire-extinguishing systems which are different from fire suppression systems like powder extinguisher or halon extinguishing system, etc. Fixed aerosol auto fire-extinguishing substances which are including solid alkali salts generated by combustion of solid composition. It represents high fire suppression ability due to particle friendly auto fire-extinguishing systems for the reason of excluding toxic substances in it's composition.

  • PDF

An Experimental Study on the Automobile Engine Room Fire Using the Extinguishing Agents (소화약제를 이용한 자동차 엔진룸 화재 실험에 관한 연구)

  • Han, Yong-Taek;Kim, Dong-Ho;Kwon, Sung-Pil
    • Fire Science and Engineering
    • /
    • v.28 no.4
    • /
    • pp.1-7
    • /
    • 2014
  • Several complex devices and equipments are installed in the car's engine room, including various kind of oils or other flammable materials. So re-ignition is very likely to take place in it. In addition, it is restrictive for the driver or the occupant to open the bonnet and to spray the fire extinguisher in the engine room due to the high possibility of explosion. Therefore, a fire extinguishing system, which can detect a fire and inject the fire extinguishing agent to extinguish it, and fire extinguishing agents including HFC-227ea, which can stand the high temperature within the engine room and hold the viscosity sufficient to keep it in the kind of foam, were developed and tested. And the suffocation effect and the cooling effect come from the fire extinguishing principle of the foam fire extinguishing agent and the inhibiter catalyst effect come from the one of HFC-227ea was led simultaneously, and fire extinguishing agents without the secondary damage caused by residuals after the fire extinguishment like a case of the powder fire extinguishing agent, were developed. And experiments using a vehicle collision after the discharge is complete, foreign material can be removed without extinguishing the advantage that experimental results obtained.

Policy Direction for Fire Products Life Expectancy Legislation (소방용품 내용연수 제도화 정책방안)

  • Baek, Chang Sun;Park, In-Seon
    • Fire Science and Engineering
    • /
    • v.30 no.1
    • /
    • pp.111-120
    • /
    • 2016
  • This study is intended to provide legislative direction for fire products life expectancy. Domestic and international laws relating to fire products life expectancy have been reviewed, and the results of a Fire Safety Manager Consciousness (FSMC) survey were analyzed. The FSMC survey has been designed in order to assist with the establishment of appropriate fire safety policy. A questionnaire survey was conducted with 660 fire safety administrators from 17 municipal and provincial districts, with the intention of gaining expertise on the extension of life-span for 32 fire products. The survey also asked for candidates opinions on future policy direction. Based on the survey results and the review of policies within other nations, we have devised a set of policy issues with the intention of extending the life-span of fire-safety items. The survey result revealed that 79.3% of Fire Safety Managers (FSMs) concurred with the establishment of legislation regarding the maintenance and correct care of fire-safety products. Overall, over 30% of FSMs were in favor of regulations regarding Ddry chemical fire extinguishers (77.3%), fire detectors (44.6%), fire hoses (44.4%), gaseous agent fire extinguisher (40.6%), automatic descending life lines (36.2%), exit lights (35.9%), air respirators (35.9%), extinguishing systems for residential cooking facilities (33.9%), automatic spray-type extinguishing units (33.9%), emergency lights (31.2%), and gas leakage detectors (30.7%). Especially, among these, dry chemical fire extinguishers (60.0%), detectors (20.0%), and fire hose (18.8%) were identified as the fire products primarily in need of maintenance legislation. The general consensus is that fire products older than 10 years need to be replaced. Based on the survey results, there was general agreement that fire product life expectancy is in need of legislation. This study recommends the introduction of fire product life expectancy legislation in phases.

On the Occurrence of Defects by Vehicle Type According to the Fire-fighting Vehicle Detailed Inspection (소방차량 정밀점검 분석에 따른 차종별 결함 발생에 관한 연구)

  • Lee, Jang Won;Han, Yong-Taek
    • Journal of the Society of Disaster Information
    • /
    • v.17 no.1
    • /
    • pp.112-119
    • /
    • 2021
  • Purpose: This study is based on the detailed inspection data for the last 6 years of fire-fighting high ladder vehicles, fire-fighting inflected ladder vehicles, fire-fighting chemical vehicles and fire-fighting pump vehicles used in front-line fire departments. The purpose is to contribute to the technological development of fire-fighting vehicles by grasping the implementation status of each city and province, the rate of defects, and the occurrence of defects by year. Method: The implementation status by city and province, defect incidence rate, and defect occurrences by year were analyzed. Result: From 2012 to 2017, when the average of 230 or more overhaul vehicles was requested, the results of each city/province show slight fluctuations, but the number of defects gradually decreased due to the old fire-fighting vehicle replacement project and the response of fire vehicle manufacturers. Conclusion: In the case of fire-fighting ladders, the incidence rate of defects was found to be in the order of elevator device, electric device, ladder device, and pneumatic supply device. And in the case of the fire fighting ladder, it was confirmed that the incidence of defects appeared in the order of the refractive ladder, hydraulic cylinder, hydraulic oil, and pneumatic supply device. In the case of fire-fighting chemical vehicles, it was confirmed that defects occurred in the powder fire extinguishing device, fire pump, vacuum pump, and pneumatic supply device.

Follow-Up Survey Fire Truck Deterioration (소방자동차 노후화에 따른 고장 발생원인 추적조사 연구)

  • Lee, Jang-Won;Kim, Eui-Tae;Rie, Dong-Ho
    • Fire Science and Engineering
    • /
    • v.29 no.3
    • /
    • pp.59-64
    • /
    • 2015
  • This study analyzed results of the causes of failure in 1,022 fire trucks currently being used in South Korea (aerial ladder, aerial platform, pumper, and chemical fire trucks). The results show that 46% of aerial ladder trucks have defective in the elevator brake systems, 29% of aerial platform trucks have contamination in the hydraulic oil, 37% of pumpers have defective in the pneumatic cylinders of the air supply system, and 39% of chemical fire trucks have defective in the powder fire extinguishing systems. The principal reasons for malfunctions are deterioration of the apparatuses, and accumulated fatigue from repetitive use of certain components, such as pneumatic cylinders in the air supply system and wire rope jamming in rollers in the ladder apparatus. These manufacturing defects should be improved upon in the manufacturing process. As a result, the fire trucks, which are used for 5 years or more, need precise inspections in accordance with the Regulation on Fire Apparatus Maintenance. Fire apparatuses have a service life of 10 to 12 years or more. They need to be replaced or require life extension, and they should be kept in top shape with the best maintenance for public safety.