Studies on the Species Crossabilities in the Genus Pinus and Principal Characteristics of F1 Hybrids (일대잡종송(一代雜種松)의 교배친화력(交配親和力)과 특성(特性)에 관(關)한 연구(硏究))
-
- Journal of Korean Society of Forest Science
- /
- v.16 no.1
- /
- pp.1-32
- /
- 1972
By means of the interspecific hybridization in the Sub-genus Diploxylon of the Genus Pinus,
This paper is to investigate the standing crops and microfungal flora in soil in Phyllostachys reticulata forests in both the Yesan area (A) and the Kwangsan area (B). The stand density of the bamboo revealed 17,250 shoots per ha in area A, and in area B 14,780 shoots which were 16.1% less in number than area A. In respect to the environmental factors between the two areas, the mean temperature during the growth period was
As social data become into the spotlight, mainstream web search engines provide data indicate how many people searched specific keyword: Web Search Traffic data. Web search traffic information is collection of each crowd that search for specific keyword. In a various area, web search traffic can be used as one of useful variables that represent the attention of common users on specific interests. A lot of studies uses web search traffic data to nowcast or forecast social phenomenon such as epidemic prediction, consumer pattern analysis, product life cycle, financial invest modeling and so on. Also web search traffic data have begun to be applied to predict tourist inbound. Proper demand prediction is needed because tourism is high value-added industry as increasing employment and foreign exchange. Among those tourists, especially Chinese tourists: Youke is continuously growing nowadays, Youke has been largest tourist inbound of Korea tourism for many years and tourism profits per one Youke as well. It is important that research into proper demand prediction approaches of Youke in both public and private sector. Accurate tourism demands prediction is important to efficient decision making in a limited resource. This study suggests improved model that reflects latest issue of society by presented the attention from group of individual. Trip abroad is generally high-involvement activity so that potential tourists likely deep into searching for information about their own trip. Web search traffic data presents tourists' attention in the process of preparation their journey instantaneous and dynamic way. So that this study attempted select key words that potential Chinese tourists likely searched out internet. Baidu-Chinese biggest web search engine that share over 80%- provides users with accessing to web search traffic data. Qualitative interview with potential tourists helps us to understand the information search behavior before a trip and identify the keywords for this study. Selected key words of web search traffic are categorized by how much directly related to "Korean Tourism" in a three levels. Classifying categories helps to find out which keyword can explain Youke inbound demands from close one to far one as distance of category. Web search traffic data of each key words gathered by web crawler developed to crawling web search data onto Baidu Index. Using automatically gathered variable data, linear model is designed by multiple regression analysis for suitable for operational application of decision and policy making because of easiness to explanation about variables' effective relationship. After regression linear models have composed, comparing with model composed traditional variables and model additional input web search traffic data variables to traditional model has conducted by significance and R squared. after comparing performance of models, final model is composed. Final regression model has improved explanation and advantage of real-time immediacy and convenience than traditional model. Furthermore, this study demonstrates system intuitively visualized to general use -Youke Mining solution has several functions of tourist decision making including embed final regression model. Youke Mining solution has algorithm based on data science and well-designed simple interface. In the end this research suggests three significant meanings on theoretical, practical and political aspects. Theoretically, Youke Mining system and the model in this research are the first step on the Youke inbound prediction using interactive and instant variable: web search traffic information represents tourists' attention while prepare their trip. Baidu web search traffic data has more than 80% of web search engine market. Practically, Baidu data could represent attention of the potential tourists who prepare their own tour as real-time. Finally, in political way, designed Chinese tourist demands prediction model based on web search traffic can be used to tourism decision making for efficient managing of resource and optimizing opportunity for successful policy.
Experiment I: The objective of this study was to know variation in some selected agronomic characters of sweet sorghum when planted in several growing seasons. The 17 different sweet sorghum varieties having various maturities, and plant, syrup and sugar types were used in this study which had been carried out for the period of two years from 1968 to 1969 at Industrial Crops Division of Crop Experiment Station in Suwon. These varieties were planted at an interval of 20 days from April 5 to August 25 both in 1968 and 1969. The experimental results could be summarized as follows: 1. As planting was made early, the number of days from sowing to germination was getting prolonged while germination took place early when planted at the later date of which air temperature was relatively higher. However, such a tendency was not observed beyond the planting on August 25. In general, a significant negative correlation was found between the number of days from sowing to germination and the average daily temperature but a positive correlation was found between the former and the total accumulated average temperature during the growth period. 2. The period from sowing to heading was generally shortened as planting was getting delayed. The average varietal difference in number of days from sowing to heading was as much as 30.2 days. All the varieties were grouped into early-, medium and late-maturing groups based upon a difference of 10 days in heading. The average number of days from sowing to heading was 78.5