Proceedings of the Korean Information Science Society Conference
/
2001.10b
/
pp.157-159
/
2001
신경 트리는 신경망과 결정 트리의 구조를 결합한 형태의 분류기로서 비선형적 결정 경계 형성이 가능하며 기존 신경망에 비해 학습, 출력시 계산량이 적다는 장점을 갖는다. 본 논문에서는 신경 트리의 노드를 구성하는 신경망을 학습하기 위하여 기존의 방법들과는 달리 교사 학습 방법인 LVQ3 알고리즘을 사용하는 신경 트리 분류기를 제안한다. 학습 과정을 통해 생성된 트리는 오인식율 추정을 이용한 가지치기를 통하여 효율적인 트리로 재구성된다. 제안하는 방법은 실제 데이터 집합들을 이용한 실험을 통하여 그 성능을 검증하였다.
Proceedings of the Korean Information Science Society Conference
/
2001.10a
/
pp.280-282
/
2001
분자생물학의 급진적 발전은 현대 계통분류학에 큰 변혁을 가져왔다. 특히 유전의 근원물질인 DNA나 RNA를 분리.조작.분석하는 기술의 발전으로 이를 이용만 계통수 제작은 계통생물학의 중요한 실험방법으로 자리잡고 있다. 그 중 염기서열 비교 방법은 현재 유전자 계통수 제작에 가장 널리 이용되는 방법이다. 하지만 이러만 계통수는 각 객체간의 거리만을 표현하고, 객체군간의 차이는 설명하기 힘들다. 본 연구에서는 염기서열의 상대적인 특징(유사도)을 대신하는 염기서열의 총량과 염기 함량 등을 이용해 새로이 분류 기법 중 결정트리 방법에 적응하고, 종 분류의 유전적 모델을 설계한다. 또한 결정트리의 클래스인 종은 상위 클래스들을 포함하고 있어, 본 논문에서는 기존의 결정트리 분류자를 수정한 단계적 결정트기 분류자를 제안한다.
In this paper, a new voice personality transformation method is proposed. which modifies speaker-dependent feature variables in the speech signals. The proposed method takes the cepstrum vectors and pitch as the transformation paremeters, which represent vocal tract transfer function and excitation signals, respectively. To transform these parameters, a multiple response classification and regression tree (MR-CART) is employed. MR-CART is the vector extended version of a conventional CART, whose response is given by the vector form. We evaluated the performance of the proposed method by comparing with a previously proposed codebook mapping method. We also quantitatively analyzed the performance of voice transformation and the complexities according to various observations. From the experimental results for 4 speakers, the proposed method objectively outperforms a conventional codebook mapping method. and we also observed that the transformed speech sounds closer to target speech.
Proceedings of the Korean Information Science Society Conference
/
1999.10b
/
pp.21-23
/
1999
결정 트리는 실세계에서 얻어지는 많은 사례들로부터 분류 정보를 얻기 위해 사용되는 유용한 방법중의 하나이다. 분류를 목적으로 사용되는 사례, 즉 데이터들은 실제 현장에서 얻어지기 때문에 관측오류, 불확실성, 주관적인 판단 등의 원인으로 참 값이 아닌 근사 값으로써 기술되는 경우가 많으며, 이러한 잠재적 오류로 인해 잘못된 결정 트리가 생성될 수 있다. 한편, 트리를 생성하는 각각의 과정에서 하나의 특징 값만을 고려하지 않고 두 가지 이상의 특징 값을 동시에 고려하여 결정 트리를 생성할 경우 보다 정확한 분류 정보를 기대할 수 있다. 본 논문에서는 수치 특징 값으로 기술된 데이터로부터 보다 정확한 분류 정보를 얻을 수 있고, 작은 오류에 강건한 사선형 분할 퍼지 결정 트리를 제안한다. 또한 제안된 사선형 분할 퍼지 결정 트리의 생성 절차 및 생성된 결정 트리를 이용하여 새로운 데이터에 분류 정보를 부여하는 추론 과정을 소개한다.
Journal of the Korean Data and Information Science Society
/
v.23
no.5
/
pp.949-959
/
2012
This article is to find the right size of decision trees that performs better for boosting algorithm. First we defined the tree size D as the depth of a decision tree. Then we compared the performance of boosting algorithm with different tree sizes in the experiment. Although it is an usual practice to set the tree size in boosting algorithm to be small, we figured out that the choice of D has a significant influence on the performance of boosting algorithm. Furthermore, we found out that the tree size D need to be sufficiently large for some dataset. The experiment result shows that there exists an optimal D for each dataset and choosing the right size D is important in improving the performance of boosting. We also tried to find the model for estimating the right size D suitable for boosting algorithm, using variables that can explain the nature of a given dataset. The suggested model reveals that the optimal tree size D for a given dataset can be estimated by the error rate of stump tree, the number of classes, the depth of a single tree, and the gini impurity.
In this paper, we show a study on how to model a phoneme of which acoustic feature is changed according to both left-hand and right-hand phonemes. For this purpose, we make a comparative study on two kinds of algorithms; a unit reduction algorithm and decision tree modeling. The unit reduction algorithm uses only statistical information while the decision tree modeling uses statistical information and Korean acoustical information simultaneously. Especially, we focus on how to model context-dependent phonemes based on decision tree modeling. Finally, we show the recognition rate when context-dependent phonemes are obtained by the decision tree modeling.
결정트리 생성은 일련의 특징값으로 기술된 사례들로부터 분류 지식을 추출하는 학습 방법중의 하나이다. 현장에서 수집되는 사례들은 관측 오류, 주관적인 판단, 불확실성 등으로 인해서 애매하게 주어지는 경우가 많다. 퍼지숫자나 구간값을 사용함으로써 이러한 애매한 데이타의 수치 속성은 쉽게 표현될 수 있다. 이 논문에서는 수치 속성은 보통값 뿐마아니라 퍼지숫자나 구간값을 갖을 수 있고, 비수치 속서은 보통값을 가지며, 데이터의 클래스는 확신도를 기자는 학습 데이터들로 부터, 분류 규칙을 마이닝하기 위한 퍼지 결정트리 생성 방법을 제안한다. 또한 제안한 방법에 의해 생성된 퍼지 결정트리를 사용하여, 새로운 데이터에 대한 클래스를 결정하는 추론 방법을 소개한다. 한편, 제안된 방법의 유용성을 보이기 위해 수행한 실험의 결과를 보인다.
문맥 광고에서 웹 페이지의 내용과 의미적으로 연관된 광고를 매칭하기 위해, 최근 웹 페이지와 광고를 동일한 분류 트리에 분류하여 의미적으로 매칭하는 방법이 제안되었다. 그러나 이 방법에서 사용된 분류 트리 및 분류기를 작성하기 위해선 많은 시간과 노력이 필요하다. 따라서 이를 용이하게 하기 위하여, 본 논문에서는 오픈 디렉토리 프로젝트의 공개 데이터를 활용하여 웹 페이지와 광고의 주제 분류를 위한 분류 트리 및 분류기를 작성하는 기법을 제안한다. 또한 실험 결과를 통하여 제안한 기법이 문맥 광고에서 웹 페이지와 광고의 의미적 매칭의 높은 정확성을 보장하는 것을 입증한다.
Decision tree induction is a kind of useful machine learning approach for extracting classification rules from a set of feature-based examples. According to the partitioning style of the feature space, decision trees are categorized into univariate decision trees and multivariate decision trees. Due to observation error, uncertainty, subjective judgment, and so on, real-world data are prone to contain some errors in their feature values. For the purpose of making decision trees robust against such errors, there have been various trials to incorporate fuzzy techniques into decision tree construction. Several researches hove been done on incorporating fuzzy techniques into univariate decision trees. However, for multivariate decision trees, few research has been done in the line of such study. This paper proposes a fuzzy decision tree induction method that builds fuzzy multivariate decision trees named fuzzy oblique decision trees, To show the effectiveness of the proposed method, it also presents some experimental results.
Proceedings of the Korean Information Science Society Conference
/
2001.04b
/
pp.82-84
/
2001
데이터 분류(classification)란 이미 분류된 객체집단군 즉, 학습 데이터에 대한 분석을 바탕으로 아직 분류되지 않는 개체의 소속 집단을 결정하는 작업이다. 현재까지 제안된 여러 가지 분류 모델 중 결정 트리(decision tree)는 인간이 이해하기 쉬운 형태를 갖고 있기 때문에 탐사적인 데이터 마이닝(exploatory)작업에 특히 유용하다. 본 논문에서는 결정 트리 분류에 다중 추상화 수준 문제(multiple abstraction level problem)를 소개하고 이러한 문제를 다루기 위한 실용적인 방법을 제안한다. 데이터의 다중 추상화 수준 문제를 해결하기 위해 추상화 수준을 강제로 같게 하는 것이 문제를 해결할 수 없다는 것을 보인 후, 데이터 값들 사이의 일반화, 세분화 관련성을 그대로 유지하면서 존재하는 유용화할 수 있는 방법을 제시한다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.