Proceedings of the Korean Institute of Information and Commucation Sciences Conference
/
2021.05a
/
pp.277-279
/
2021
There is a problem that learning of a prediction model is not well performed depending on the characteristics of each particular matter concentration. To solve this problem, it is necessary to design a prediction model for low concentration and high concentration separately. Therefore, a classification model is needed to classify the concentration of particular matter into low and high concentrations. This paper proposes a classification model to classify low and high concentrations based on the concentration of particular matter. DNN was used as the classification model algorithm, and the classification model was designed by applying the optimal parameters after searching for hyper parameters. As for the result of evaluating the performance of the model, 97.54% of the low concentration classification was measured. And in the case of high concentration classification, 85.51% was measured.
Korean Journal of Construction Engineering and Management
/
v.25
no.3
/
pp.58-67
/
2024
In the era of the fourth industrial revolution, data plays a vital role in enhancing the productivity of industries. To advance digitalization in the construction industry, which suffers from a lack of available data, this study proposes a model that classifies construction site photos by work types. Unlike traditional image classification models that solely rely on visual data, the model in this study includes semantic analysis of construction work types. This is achieved by extracting the significance of relationships between objects and work types from the standard construction specification. These relationships are then used to enhance the classification process by correlating them with objects detected in photos. This model improves the interpretability and reliability of classification results, offering convenience to field operators in photo categorization tasks. Additionally, the model's practical utility has been validated through integration into a classification program. As a result, this study is expected to contribute to the digitalization of the construction industry.
Fingerprint classification is a step to increase the efficiency of an 1:N fingerprint recognition system and plays a role to reduce the matching time of fingerprint and to increase accuracy of recognition. It is difficult to classify fingerprints, because the ridge pattern of each fingerprint class has an overlapping characteristic with more than one class, fingerprint images may include a lot of noise and an input condition is an exceptional case. In this paper, we propose a novel approach to design a stochastic model and to accomplish fingerprint classification using a directional characteristic of fingerprints for an effective classification of various qualities. We compute the directional value by searching a fingerprint ridge pixel by pixel and extract a directional characteristic by merging a computed directional value by fixed pixels unit. The modified Markov model of each fingerprint class is generated using Markov model which is a stochastic information extraction and a recognition method by extracted directional characteristic. The weight list of classification model of each class is decided by analyzing the state transition matrixes of the generated Markov model of each class and the optimized value which improves the performance of fingerprint classification using GA (Genetic Algorithm) is estimated. The performance of the optimized classification model by GA is superior to the model before the optimization by the experiment result of applying the fingerprint database of various qualities to the optimized model by GA. And the proposed method effectively achieved fingerprint classification to exceptional input conditions because this approach is independent of the existence and nonexistence of singular points by the result of analyzing the fingerprint database which is used to the experiments.
Proceedings of the Korea Information Processing Society Conference
/
2005.11a
/
pp.197-200
/
2005
본 논문은 유해한 동영상을 실시간으로 분석하고 차단하기 위하여, 동영상의 비주얼 특징으로서 그룹 프레임(Group of Frame) 특징을 추출하여 SVM 학습모델을 활용하는 유해 동영상 분류에 관한 것이다. 지금까지 동영상 분류에 관한 연구는 주로 입력 동영상을 뉴스, 스포츠, 영화, 뮤직 비디오, 상업 비디오 등 사전에 정의한 몇 개의 장르에 자동으로 할당하는 기술이었다. 그러나 이러한 분류 기술은 미리 정의한 장르에 따른 일반적인 분류 모델을 사용하기 때문에 분류의 정확도가 높지 않다. 따라서, 유해 동영상을 실시간으로 자동 분류하기 위해서는, 신속하고 효과적인 동영상 내용분석에 적합한 유해 동영상 특화의 특징 추출과 분류 모델 연구가 필요하다. 본 논문에서는 유해 동영상에 대하여 신속하고, 정확한 분류를 위하여 유해 동영상의 대표 특징으로서 그룹프레임 특징을 정의하고, 이를 추출하여 SVM 학습 모델을 생성하고 분류에 활용하는 매우 높은 성능의 분석 방법을 제시하였다. 이는 최근 인터넷 뿐만 아니라 다양한 매체를 통하여 급속도로 번지고 있는 유해 동영상 차단 분야에 적극 활용될 수 있을 것으로 기대된다.
Journal of the Institute of Convergence Signal Processing
/
v.23
no.4
/
pp.222-227
/
2022
In this paper, we implemented a Korean text generation and classification model based on a deep learning algorithm that can be applied to various industries. It consists of two implemented GAN-based Korean handwriting generation models and CNN-based Korean handwriting classification models. The GAN model consists of a generator model for generating fake Korean handwriting data and a discriminator model for discriminating fake handwritten data. In the case of the CNN model, the model was trained using the 'PHD08' dataset, and the learning result was 92.45. It was confirmed that Korean handwriting was classified with % accuracy. As a result of evaluating the performance of the classification model by integrating the Korean cursive data generated through the implemented GAN model and the training dataset of the existing CNN model, it was confirmed that the classification performance was 96.86%, which was superior to the existing classification performance.
Proceedings of the Korea Information Processing Society Conference
/
2007.11a
/
pp.7-8
/
2007
생체데이터란 인간개체로부터 얻을 수 있는 고유의 생체신호를 통틀어 일컫는 것이다. 본 연구에서는 생체데이터를 위한 팩터 분석 모델에 텐서 개념을 적용하여, 2차 텐서로 표현된 데이터를 위한 생성모델을 제안한다. 이 모델을 바탕으로 데이터로부터 분류에 핵심이 되는 정보를 안정적으로 추출하여 유사도 함수를 만들고 분류를 수행하는 방법을 제안한다. 실험을 통해 제안하는 방법이 기존의 벡터형태의 데이터에 대한 생성 모델을 사용한 경우보다 우수한 성능을 가짐을 확인할 수 있었다.
Proceedings of the Korean Information Science Society Conference
/
2006.06b
/
pp.49-51
/
2006
휴대폰의 사용영역이 넓어지면서 휴대폰에 저장되는 컨텍스트 정보 활용에 관심이 높아지고 있다. 하지만 정보의 양이 방대하기 때문에 개인이 정보를 분석하여 자신에게 필요한 정보로 바꾸기 위해서는 많은 노력이 필요하다. 본 논문에서는 휴대폰으로부터 컨텍스트 정보를 수집하여 활용할 수 있는 방법으로 개인이 하루 동안 경험한 일에 대한 정보를 한 눈에 알아볼 수 있도록 도와주는 계층적 이야기 구성 모델을 제안한다. 계층적 이야기 구성 모델은 3단계로 구성된다. 우선 각각의 로그를 분석하여 관련 있는 것들을 그룹으로 분류하고 분류된 그룹 내에서 설정된 경로에 대한 가중치를 계산하여 해당 그룹의 가중치로 저장한다. 마지막으로 그룹간의 경로에 대한 가중치를 계산하여 가장 높은 가중치를 갖는 경로를 한아 이야기 구성 모델로 설정한다. 계층적으로 이야기 경로를 선택한 경우와 그룹으로 분류하지 않고 경로를 계산한 경우의 시간 복잡도를 비교 평가하여 성능을 측정하였다. 이야기 구성모델을 계층적으로 분류했을 때의 성능이 분류하지 않은 경우보다 경로를 선정할 때 더 높은 성능을 나타내었다.
Annual Conference on Human and Language Technology
/
2021.10a
/
pp.410-413
/
2021
본 논문에서는 분류 모델의 주류로 사용되고 있는 Encoder 기반 사전학습 모델(BERT, ALBERT, ELECTRA)의 내부 Encoder Layer가 하부 Layer에서는 Syntactic한 분석을 진행하고 상부 Layer로 갈수록 Semantic 한 분석을 진행하는 점, Layer가 구성됨에 따라 Semantic 정보가 Syntactic 정보를 개선해 나간다 점에 기반한 기존 연구 결과를 바탕으로 Encoder Layer를 구성함에 따라 어떻게 성능이 변화하는지 측정한다. 그리고 의도 분류를 위한 학습 데이터 셋도 분류하고자 하는 성격에 따라 Syntactic한 구성과 Semantic한 구성을 보인다는 점에 착안하여 ALBERT 및 ELECTRA를 이용한 의도 분류 모델을 구축하고 각 데이터 셋에 맞는 최적의 Encoder Layer 구성을 가지는 모델을 비교한 결과, 두 데이터 셋 간에 다른 Layer 구성을 보이는 점과 기존 모델보다 성능이 향상됨을 확인하였다.
Annual Conference on Human and Language Technology
/
2019.10a
/
pp.115-119
/
2019
딥러닝 모델은 자동으로 자질을 추출하고 추상화 하기 위해 깊은 은닉층을 가지며, 이전 연구들은 이러한 은닉층을 깊게 쌓는 것이 성능 향상에 기여한다는 것을 증명해왔다. 하지만 데이터나 태스크에 따라 높은 성능을 내는 깊이가 다르고, 모델 깊이 설정에 대한 명확한 근거가 부족하다. 본 논문은 데이터 셋에 따라 적합한 깊이가 다르다고 가정하고, 이를 확인하기 위해 모델 내부에 분류기를 추가하여 모델 내부의 학습 경향을 확인하였다. 그 결과 태스크나 입력의 특성에 따라 필요로 하는 깊이에 차이가 있음을 발견하였고, 이를 근거로 가변적으로 깊이를 선택하여 모델의 출력을 조절하여 그 결과 성능이 향상됨을 확인하였다.
Proceedings of the Korea Information Processing Society Conference
/
2005.11a
/
pp.1363-1366
/
2005
대학 정보시스템 분류를 기존의 통합성과 커스터마이징으로 분류하는 것을 현 실정에 맞게 현재의 정보화율을 고려한 어플리케이션 분류를 시도하였다. 전국 대학을 대상으로 실시한 설문조사를 통해 각 시스템의 통합성과 커스터마이징을 조사하여 ‘복잡도’라는 하나의 변수로 설정하였다. 대학에서 정보화가 가능한 모든 시스템에 대해 현재의 정보화율과 복잡도를 고려하여 대학 정보시스템을 분류하였다. 이 분류를 기준으로 ASP 방식을 도입하는 방안(로드맵)을 제시하였다. 분류 모델에 정보화율을 도입함으로써 현재의 상황을 고려한 어플리케이션 분류 모델을 제시하였다. 이 분류 모델은 각 분야에 있어 정보화율에 따른 단계적 ASP 도입 방안 마련에 기초적 기준이 될 것이다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.