• Title/Summary/Keyword: 분광영상(hyperspectral)

Search Result 126, Processing Time 0.031 seconds

Comparison between Hyperspectral and Multispectral Images for the Classification of Coniferous Species (침엽수종 분류를 위한 초분광영상과 다중분광영상의 비교)

  • Cho, Hyunggab;Lee, Kyu-Sung
    • Korean Journal of Remote Sensing
    • /
    • v.30 no.1
    • /
    • pp.25-36
    • /
    • 2014
  • Multispectral image classification of individual tree species is often difficult because of the spectral similarity among species. In this study, we attempted to analyze the suitability of hyperspectral image to classify coniferous tree species. Several image sets and classification methods were applied and the classification results were compared with the ones from multispectral image. Two airborne hyperspectral images (AISA, CASI) were obtained over the study area in the Gwangneung National Forest. For the comparison, ETM+ multispectral image was simulated using hyperspectral images as to have lower spectral resolution. We also used the transformed hyperspectral data to reduce the data volume for the classification. Three supervised classification schemes (SAM, SVM, MLC) were applied to thirteen image sets. In overall, hyperspectral image provides higher accuracies than multispectral image to discriminate coniferous species. AISA-dual image, which include additional SWIR spectral bands, shows the best result as compared with other hyperspectral images that include only visible and NIR bands. Furthermore, MNF transformed hyperspectral image provided higher classification accuracies than the full-band and other band reduced data. Among three classifiers, MLC showed higher classification accuracy than SAM and SVM classifiers.

Current Status of Hyperspectral Remote Sensing: Principle, Data Processing Techniques, and Applications (초분광 원격탐사의 특성, 처리기법 및 활용 현용)

  • Kim Sun-Hwa;Ma Jung-Rim;Kook Min-Jung;Lee Kyu-Sung
    • Korean Journal of Remote Sensing
    • /
    • v.21 no.4
    • /
    • pp.341-369
    • /
    • 2005
  • Hyperspectral images have emerged as a new and promising remote sensing data that can overcome the limitations of existing optical image data. This study was designed to provide a comprehensive review on definition, data processing methods, and applications of hyperspectral data. Various types of airborne, spaceborne, and field hyperspectral image sensors were surveyed from the available literatures and internet search. To understand the current status of hyperspectral remote sensing technology and research development, we collected several hundreds research papers from international journals (IEEE Transactions on Geoscience and Remote Sensing, International Journal of Remote Sensing, Remote Sensing of Environment and AVIRIS Workshop Proceedings), and categorized them by sensor types, data processing techniques, and applications. Although several hyperspectral sensors have been developing, AVIRIS has been a primary data source that the most hyperspectral remote sensing researches were relied on. Since hyperspectral data have very large data volume with many spectral bands, several data processing techniques that are particularly oriented to hyperspectral data have been developed. Although atmospheric correction, spectral mixture analysis, and spectral feature extraction are among those processing techniques, they are still in experimental stage and need further refinement until the fully operational adaptation. Geology and mineral exploration were major application in early stage of hyperspectral sensing because of the distinct spectral features of rock and minerals that could be easily observed with hyperspectral data. The applications of hyperspectral sensing have been expanding to vegetation, water resources, and military areas where the multispectral sensing was not very effective to extract necessary information.

The Study on Improving Accuracy of Land Cover Classification using Spectral Library of Hyperspectral Image (초분광영상의 분광라이브러리를 이용한 토지피복분류의 정확도 향상에 관한 연구)

  • Park, Jung-Seo;Seo, Jin-Jae;Go, Je-Woong;Cho, Gi-Sung
    • Journal of Cadastre & Land InformatiX
    • /
    • v.46 no.2
    • /
    • pp.239-251
    • /
    • 2016
  • Hyperspectral image is widely used for land cover classification because it has a number of narrow bands and allow each pixel to include much more information in comparison with previous multi-spectral image. However, Higher spectral resolution of hyperspectral image results in an increase in data volumes and a decrease in noise efficiency. SAM(Spectral Angle Mapping), a method based on vector inner product to compare spectrum distribution, is a highly valuable and popular way to analyze continuous spectrum of hyperspectral image. SAM is shown to be less accurate when it is used to analyze hyperspectral image for land cover classification using spectral library. this inaccuracy is due to the effects of atmosphere. We suggest a decision tree based method to compensate the defect and show that the method improved accuracy of land cover classification.

Evaluation of Block-based Sharpening Algorithms for Fusion of Hyperion and ALI Imagery (Hyperion과 ALI 영상의 융합을 위한 블록 기반의 융합기법 평가)

  • Kim, Yeji;Choi, Jaewan
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.33 no.1
    • /
    • pp.63-70
    • /
    • 2015
  • An Image fusion, or Pansharpening is a methodology of increasing the spatial resolution of image with low-spatial resolution using high-spatial resolution images. In this paper, we have performed an image fusion of hyperspectral imagery by using panchromatic image with high-spatial resolution, multispectral and hyperspectral images with low-spatial resolution, which had been acquired by ALI and Hyperion of EO-1 satellite sensors. The study has been mainly focused on evaluating performance of fusion process following to the image fusion methodology of the block association, which had applied to ALI and Hyperion dataset by considering spectral characteristics between multispectral and hyperspectral images. The results from experiments have been identified that the proposed algorithm efficiently improved the spatial resolution and minimized spectral distortion comparing with results from a fusion of the only panchromatic and hyperspectral images and the existing block-based fusion method. Through the study in a proposed algorithm, we could concluded in that those applications of airborne hyperspectral sensors and various hyperspectral satellite sensors will be launched at future by enlarge its usages.

Accuracy Assessment of Supervised Classification using Training Samples Acquired by a Field Spectroradiometer: A Case Study for Kumnam-myun, Sejong City (지상 분광반사자료를 훈련샘플로 이용한 감독분류의 정확도 평가: 세종시 금남면을 사례로)

  • Shin, Jung Il;Kim, Ik Jae;Kim, Dong Wook
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.24 no.1
    • /
    • pp.121-128
    • /
    • 2016
  • Many studies are focused on image data and classifier for comparison or improvement of classification accuracy. Therefore studies are needed aspect of the training samples on supervised classification which depend on reference data or skill of analyst. This study tries to assess usability of field spectra as training samples on supervised classification. Classification accuracies of hyperspectral and multispectral images were assessed using training samples from image itself and field spectra, respectively. The results shown about 90% accuracy with training sample collected from image. Using field spectra as training sample, accuracy was decreased 10%p for hyperspectral image, and 20%p for multispectral image. Especially, some classes shown very low accuracies due to similar spectral characteristics on multispectral image. Therefore, field spectra might be used as training samples on classification of hyperspectral image, although it has limitation for multispectral image.

EO-1 Hyperion / Landsat-7 ETM+ 영상을 활용한 영상분류 정확도 분석

  • Jang Se-Jin;Chae Ok-Sam
    • Proceedings of the KSRS Conference
    • /
    • 2006.03a
    • /
    • pp.223-227
    • /
    • 2006
  • 최근 위성기술의 발전은 크게 두 가지 방향으로 진행되고 있다. 하나는 고해상도(High Resolution)라는 말로 대표되는 공간해상도(Spatial Resolution)의 향상이고, 다른 하나는 초분광(Hyperspectral)으로 대표되는 분광해상도(Spectral Resolution)의 향상이다. 특히 초분광영상(Hyperspectral Image)은 지상피복 및 대상물에 대해 실험실에서 얻을 수 있을 정도의 연속적이고 좁은 파장 간격의 분광정보를 제공하고 있어, 기존에 사용하던 다중분광영상(Multispectral Image) 보다 많은 양의 정보를 사용자에게 제공한다. 본 논문에서는 다중분광영상과 초분광영상의 분광 정보를 활용한 영상분류능력을 비교분석하고 그 결과를 평가하였다. 분석결과는 다중분광영상에서 식별이 어려웠던 초지, 농지, 나지에 대한 분석 능력이 초분광영상에서 상당히 향상됨으로써 감독분류에서 약 20% 정도의 정확도 향상을 가져왔으며, 무감독분류의 경우에는 미소한 차이로 그 정확도가 향상된다는 것이다. 이런 결과는 향후 초분광영상의 토지 피복분류 및 대상물 탐사에 긍정적인 활용 방안을 제시할 수 있음을 알려주고 있다.

  • PDF

The study on Decision Tree method to improve land cover classification accuracy of Hyperspectral Image (초분광영상의 토지피복분류 정확도 향상을 위한 Decision Tree 기법 연구)

  • SEO, Jin-Jae;CHO, Gi-Sung;SONG, Jang-Ki
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.21 no.3
    • /
    • pp.205-213
    • /
    • 2018
  • Hyperspectral image is more increasing spectral resolution that Multi-spectral image. Because of that, each pixel of the hyperspectral image includes much more information and it is considered the most appropriate technic for land cover classification. but recent research of hyperspectral image is stayed land cover classification of general level. therefore we classified land cover of detail level using ED, SAM, SSS method and made Decision Tree from result of that. As a result, the overall accuracy of general level was improved by 1.68% and the overall accuracy of detail level was improved by 5.56%.

Hyperspectral Image Fusion Algorithm Based on Two-Stage Spectral Unmixing Method (2단계 분광혼합기법 기반의 하이퍼스펙트럴 영상융합 알고리즘)

  • Choi, Jae-Wan;Kim, Dae-Sung;Lee, Byoung-Kil;Yu, Ki-Yun;Kim, Yong-Il
    • Korean Journal of Remote Sensing
    • /
    • v.22 no.4
    • /
    • pp.295-304
    • /
    • 2006
  • Image fusion is defined as making new image by merging two or more images using special algorithms. In case of remote sensing, it means fusing multispectral low-resolution remotely sensed image with panchromatic high-resolution image. Generally, hyperspectral image fusion is accomplished by utilizing fusion technique of multispectral imagery or spectral unmixing model. But, the former may distort spectral information and the latter needs endmember data or additional data, and has a problem with not preserving spatial information well. This study proposes a new algorithm based on two stage spectral unmixing model for preserving hyperspectral image's spectral information. The proposed fusion technique is implemented and tested using Hyperion and ALI images. it is shown to work well on maintaining more spatial/spectral information than the PCA/GS fusion algorithms.

Atmospheric Correction Effectiveness Analysis and Land Cover Classification Using Airborne Hyperspectral Imagery (항공 하이퍼스펙트럴 영상의 대기보정 효과 분석 및 토지피복 분류)

  • Lee, Jin-Duk;Bhang, Kon-Joon;Joo, Young-Don
    • The Journal of the Korea Contents Association
    • /
    • v.16 no.7
    • /
    • pp.31-41
    • /
    • 2016
  • Atmospheric correction as a preprocessing work should be performed to conduct accurately landcover/landuse classification using hyperspectral imagery. Atmospheric correction on airborne hyperspectral images was conducted and then the effect of atmospheric correction by comparing spectral reflectance characteristics before and after atmospheric correction for a few landuse classes was analyzed. In addition, land cover classification was first conducted respectively by the maximum likelihood method and the spectral angle mapper method after atmospheric correction and then the results were compared. Applying the spectral angle mapper method, the sea water area were able to be classified with the minimum of noise at the threshold angle of 4 arc degree. It is considered that object-based classification method, which take into account of scale, spectral information, shape, texture and so forth comprehensively, is more advantageous than pixel-based classification methods in conducting landcover classification of the coastal area with hyperspectral images in which even the same object represents various spectral characteristics.

A Comparative Study of Absolute Radiometric Correction Methods for Drone-borne Hyperspectral Imagery (드론 초분광 영상 활용을 위한 절대적 대기보정 방법의 비교 분석)

  • Jeon, Eui-ik;Kim, Kyeongwoo;Cho, Seongbeen;Kim, Shunghak
    • Korean Journal of Remote Sensing
    • /
    • v.35 no.2
    • /
    • pp.203-215
    • /
    • 2019
  • As hyperspectral sensors that can be mounted on drones are developed, it is possible to acquire hyperspectral imagery with high spatial and spectral resolution. Although the importance of atmospheric correction has been reduced since imagery of drones were acquired at a low altitude,studies on the conversion process from raw data to spectral reflectance should be done for studies such as estimating the concentration of surface materials using hyperspectral imagery. In this study, a vicarious radiometric calibration and an atmospheric correction algorithm based on atmospheric radiation transfer model were applied to hyperspectral data of drone and the results were compared and analyzed. The vicarious calibration method was applied to an empirical line calibration using the spectral reflectance of a tarp made of uniform material. The atmospheric correction algorithm used ATCOR-4 based Modran-5 that was widely used for the atmospheric correction of aerial hyperspectral imagery. As a result of analyzing the RMSE of the difference between the reference reflectance and the correction, the vicarious calibration using the tarp in a single period of hyperspectral image was the most accurate, but the atmospheric correction was possible according to the application purpose of using hyperspectral imagery. If the correction process of normalized spectral reflectance is carried out through the additional vicarious calibration for imagery from multiple periods in the future, accurate analysis using hyperspectral drone imagery will be possible.