• Title/Summary/Keyword: 분광반사율

Search Result 166, Processing Time 0.026 seconds

New N-dimensional Basis Functions for Modeling Surface Reflectance (표면반사율 모델링을 위한 새로운 N차원 기저함수)

  • Kwon, Oh-Seol
    • Journal of Broadcast Engineering
    • /
    • v.17 no.1
    • /
    • pp.195-198
    • /
    • 2012
  • The N basis functions are typically chosen so that Surface reflectance functions(SRFs) and spectral power distributions (SPDs) can be accurately reconstructed from their N-dimensional vector codes. Typical rendering applications assume that the resulting mapping is an isomorphism where vector operations of addition, scalar multiplication, component-wise multiplication on the N-vectors can be used to model physical operations such as superposition of lights, light-surface interactions and inter-reflection. The vector operations do not mirror the physical. However, if the choice of basis functions is restricted to characteristic functions then the resulting map between SPDs/SRFs and N-vectors is anisomorphism that preserves the physical operations needed in rendering. This paper will show how to select optimal characteristic function bases of any dimension N (number of basis functions) and also evaluate how accurately a large set of Munsell color chips can approximated as basis functions of dimension N.

Vicarious Radiometric Calibration of the Ground-based Hyperspectral Camera Image (지상 초분광카메라 영상의 복사보정)

  • Shin, Jung-Il;Maghsoudi, Yasser;Kim, Sun-Hwa;Kang, Sung-Jin;Lee, Kyu-Sung
    • Korean Journal of Remote Sensing
    • /
    • v.24 no.2
    • /
    • pp.213-222
    • /
    • 2008
  • Although hyperspectral sensing data have shown great potential to derive various surface information that is not usually available from conventional multispectral image, the acquisition of proper hyperspectral image data are often limited. To use ground-based hyperspectral camera image for remote sensing studies, radiometric calibration should be prerequisite. The objective of this study is to develop radiometric calibration procedure to convert image digital number (DN) value to surface reflectance for the 120 bands ground-based hyperspectral camera. Hyperspectral image and spectral measurements were simultaneously obtained from the experimental target that includes 22 different surface materials of diverse spectral characteristics at wavelength range between 400 to 900 nm. Calibration coefficients to convert image DN value to at-sensor radiance were initially derived from the regression equations between the sample image and spectral measurements using ASD spectroradiometer. Assuming that there is no atmospheric effects when the image acquisition and spectral measurements were made at very close distance in ground, we were also able to derive calibration coefficients that directly transform DN value to surface reflectance. However, these coefficients for deriving reflectance values should not be applied when the camera is used for aerial image that contains significant effect from atmosphere and further atmospheric correction procedure is required in such case.

Color Constancy Algorithm using the Maximum Luminance Surface (최대휘도표면을 이용한 색 항상성 알고리즘)

  • 안강식;조석제
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.27 no.3A
    • /
    • pp.276-283
    • /
    • 2002
  • This paper proposes a new color constancy algorithm using the maximum luminance surface. This method uses a linear model which represents the characteristics of human visual system. The most important process of linear model is the estimation of the spectral distributions of illumination from an input image. To estimate of the spectral distributions of illumination from an input image, we first estimate spectral distribution functions of reflected light on the brightest surface. Then, we estimate surface reflectance functions corresponding to the maximum luminance surface using a principal component analysis of the given munsell chips. We finally estimate the spectral distributions of illumination in an image. Using an estimated illumination, we recover an image by scaling it regularly for the lightness calibration. From the experimental results, the proposed method was effective in recovering the color images compared with others.

Vicarious Radiometric Calibration of RapidEye Satellite Image Using CASI Hyperspectral Data (CASI 초분광 영상을 이용한 RapidEye 위성영상의 대리복사보정)

  • Chang, An Jin;Choi, Jae Wan;Song, Ah Ram;Kim, Ye Ji;Jung, Jin Ha
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.23 no.3
    • /
    • pp.3-10
    • /
    • 2015
  • All kinds of objects on the ground have inherent spectral reflectance curves, which can be used to classify the ground objects and to detect the target. Remotely sensed data have to be transferred to spectral reflectance for accurate analysis. There are formula methods provided by the institution, mathematical model method and ground-data-based method. In this study, RapidEye satellite image was converted to reflectance data using spectral reflectance of a CASI hyperspectral image by using vicarious radiometric calibration. The results were compared with those of the other calibration methods and ground data. The proposed method was closer to the ground data than ATCOR and New Kurucz 2005 method and equal with ELM method.

MEASUREMENTS OF ALBEDO AND SPECTRAL PATTERNS OF MAN-MADE SATELLITE MATERIALS (인공위성 재질별 반사율 및 분광유형 측정)

  • 이동규;김상준;이준호;한원용;민상웅
    • Journal of Astronomy and Space Sciences
    • /
    • v.19 no.4
    • /
    • pp.319-326
    • /
    • 2002
  • Laboratory tests have been carried out for investigation of the spectroscopic characteristics at visible wavelength of 12 common satellite materials used in satellite bus and payload. The obtained spectral data show that the materials can be classified and identified since their spectral features and albedos distinctly differ among them. It is suggested that the result of the laboratory tests for the satellite materials can be used for the predictions of material types, material composition ratios, sizes, and masses in comparison with the spectral data obtained from observations of new satellites or space debris.

Evaluation of Spectral Information-Compaction Relationship for Reactive Material Capable of Selective Absorption of Contaminants (선택적 오염물 흡수가 가능한 반응재료의 분광정보-다짐 상관성 평가)

  • Hong, Gigwon;Yeo, Jaeyong;Lee, Kicheol;You, Seung-Kyong
    • Proceedings of the Korean Society of Disaster Information Conference
    • /
    • 2023.11a
    • /
    • pp.251-252
    • /
    • 2023
  • 본 연구에서는 오염물의 선택적 흡수가 가능한 반응재료의 분광정보 예측을 위하여 반응재료 배합 조건에 따른 분광정보와 최대건조단위중량의 상관관계를 평가하였다. 그 결과, 배합 조건에 따라 최대건조단위중량 증가하게 되면, 최대분광반사율은 감소하였고, 이를 바탕으로 분광정보 경향의 예측이 가능하였다.

  • PDF

Estimation of Paddy Rice Growth Increment by Using Spectral Reflectance Signature (분광반사특성을 이용한 벼의 생장량 추정)

  • 홍석영;이정택;임상규;정원교;조인상
    • Korean Journal of Remote Sensing
    • /
    • v.14 no.1
    • /
    • pp.83-94
    • /
    • 1998
  • To have a basic idea on the spectral reflectance signature in paddy rice canopy, we measured spectral reflectance from paddy rice canopy(Ilpumbyeo) using spectroradiometer (GER Inc. SFOV : 0.35~2.50 ${\mu}{\textrm}{m}$) in situ weekly or biweekly from transplanting to ripening stage. Spectral reflectance of the visible range (0.4~0.7 ${\mu}{\textrm}{m}$) was decreased to below 5% and then slightly increased again after heading stage in rice canopy. Meanwhile spectral reflectance of the near-infrared range (0.7~1.1 ${\mu}{\textrm}{m}$) was increased to 40~50% and then decreased a great deal after panicle initiation stage in rice canopy. Landsat TM equivalent band set ($\bar{p}$$_{TMi}$) was created by averaging spectral reflectance values to the real TM bands. Correlation analysis between the rice crop variables (LAI, total dry matter) and TM equivalent band set ($\bar{p}$$_{TMi}$) showed that LAI and total dry matter of rice were highly correlated with visible bands such as $\bar{p}$$_{TM1}$, $\bar{p}$$_{TM2}$, and $\bar{p}$$_{TM3}$. Ratio values ($\bar{p}$$_{TMi}$/$\bar{p}$$_{TMi}$) such as $\bar{p}$$_{TM4}$/$\bar{p}$$_{TM2}$ were also highly correlated with rice crop variables such as LAI and total dry matter.

Ultrafast carrier dynamics study of LT-GaAs semiconductors by using time-resolved photoreflectance spectroscopy (시간분해 광반사 분광기술을 이용한 LT-GaAs 반도체 운반자의 초고속 거동 연구)

  • 서정철;이주인;임재영
    • Korean Journal of Optics and Photonics
    • /
    • v.10 no.6
    • /
    • pp.482-486
    • /
    • 1999
  • Ultrafast carrier dynamics of LT-GaAs semiconductors was investigated by using time-resolved photoreflectance spectroscopy. We can see that decay dynamics of photoreflectance generated by carriers depends strongly on the excitation wavelength due to the structure distortion of LT-GaAs semiconductors. Ultrafast trapping of excited carriers into deep trap states gives rise to transient photoreflectance decays with a lifetime shorter than 1 ps. Also, the long-lived photoreflectance is attributed to the carriers trapped deeply at point defects. fects.

  • PDF

Analysis of Availability of High-resolution Satellite and UAV Multispectral Images for Forest Burn Severity Classification (산불 피해강도 분류를 위한 고해상도 위성 및 무인기 다중분광영상의 활용 가능성 분석)

  • Shin, Jung-Il;Seo, Won-Woo;Kim, Taejung;Woo, Choong-Shik;Park, Joowon
    • Korean Journal of Remote Sensing
    • /
    • v.35 no.6_2
    • /
    • pp.1095-1106
    • /
    • 2019
  • Damage of forest fire should be investigated quickly and accurately for recovery, compensation and prevention of secondary disaster. Using remotely sensed data, burn severity is investigated based on the difference of reflectance or spectral indices before and after forest fire. Recently, the use of high resolution satellite and UAV imagery is increasing, but it is not easy to obtain an image before forest fire that cannot be predicted where and when. This study tried to analyze availability of high-resolution images and supervised classifiers on the burn severity classification. Two supervised classifiers were applied to the KOMPSAT-3A image and the UAV multispectral image acquired after the forest fire. The maximum likelihood (MLH) classifier use absolute value of spectral reflectance and the spectral angle mapper (SAM) classifier use pattern of spectra. As a result, in terms of spatial resolution, the classification accuracy of the UAV image was higher than that of the satellite image. However, both images shown very high classification accuracy, which means that they can be used for classification of burn severity. In terms of the classifier, the maximum likelihood method showed higher classification accuracy than the spectral angle mapper because some classes have similar spectral pattern although they have different absolute reflectance. Therefore, burn severity can be classified using the high resolution multispectral images after the fire, but an appropriate classifier should be selected to get high accuracy.