• 제목/요약/키워드: 분계점 초과 방법

검색결과 7건 처리시간 0.023초

국제현물원유가의 일일 상승 및 하락율의 극단값 분석 (Analysis of Extreme Values of Daily Percentage Increases and Decreases in Crude Oil Spot Prices)

  • 윤석훈
    • 응용통계연구
    • /
    • 제23권5호
    • /
    • pp.835-844
    • /
    • 2010
  • 극단값 통계 분석의 도구로는 전통적인 연간 최대값 방법과 현대적인 분계점 방법, 그리고 분계점 방법을 개선한 변형체 등으로 분류할 수 있다. 연간 최대값 방법은 시계열자료의 연간 최대값들에 대하여 일반화극단값분포를 적합시키는 것이고, 분계점 방법은 충분히 큰 하나의 분계점을 넘어서는 초과값들의 초과여분들에 대하여 일반화파레토분포를 적합시키는 것이다. 분계점 방법의 한 변형체로서 본 논문에서는 분계점 방법에 추가적으로 초과값들의 전체 개수가 포아송분포를 따른다고 가정하는 포아송-GPD 방법을 다루고, 이를 1988.01.04부터 2009.12.31까지 수집된 서부텍사스산중질유의 현물가격 자료로부터 계산된 일일 상승율과 일일 하락율에 적용한다. 이에 따르면 일일 상승율과 일일 하락율의 분포는 정규분포와 달리 두터운 꼬리를 갖는 분포로 나타났는데, 이는 오늘날의 많은 금융 자료분석에서 나타나는 일반적인 현상과 잘 부합하는 것이다.

극단값 분포 추정을 위한 모수적 비모수적 방법 (Parametric nonparametric methods for estimating extreme value distribution)

  • 우승현;강기훈
    • 문화기술의 융합
    • /
    • 제8권1호
    • /
    • pp.531-536
    • /
    • 2022
  • 본 논문은 꼬리가 두꺼운 분포의 꼬리부분에 대한 분포를 추정할 경우 모수적 방법과 비모수적 방법의 성능에 대해 비교하였다. 모수적 방법으로는 일반화 극단값 분포와 일반화 파레토 분포를 이용하였고, 비모수적 방법은 커널형 확률밀도함수 추정방법을 적용하였다. 두 접근법의 비교를 위해 2014년부터 2018년까지 서울시 관측소별 일일 미세먼지 공공데이터를 이용하여 블록 최댓값 모형과 분계점 초과치 모형을 적용하여 함수 추정한 결과를 함께 보이고 2년, 5년, 10년의 재현수준을 통해 고농도의 미세먼지가 일어날 지역을 예측하였다.

여객선 안전귀항(SRtP)을 위한 시스템 평가에 대한 고찰

  • 나성;박재홍;허은정
    • 한국항해항만학회:학술대회논문집
    • /
    • 한국항해항만학회 2011년도 춘계학술대회
    • /
    • pp.343-345
    • /
    • 2011
  • 대형 여객선은, "a ship is its own best lifeboat"라는 개념을 바탕으로 여객선의 안전성(survivability) 향상을 위한 설계가 요구되고 있으며, 이를 위하여, 사고가 발생하더라도 선박의 자체 추진력으로 안전하게 항구까지 귀항하여야 한다는, 여객선의 안전귀항(SRtP) 이라는 개념을 IMO SOLAS에 적용시켰다. SOLAS의 여객선 안전귀항 관련 조항은, 길이 120m 이상인 선박 또는 3개 이상의 주 수직격벽을 가진 선박으로서 2010년 07월 01일 이후 건조되는 여객선에 적용된다. 여객선 안전귀항 관련 조항은 화재와 침수사고에 적용되며, 사고분계점을 넘지 아니하는 사고가 발생할 경우 자체 추진력으로 여객선의 안전한 귀항을 위하여 사용 가능한 상태로 유지되어야 하는 시스템들에 대한 설계 기준, 사고분계점을 초과하는 화재 사고가 발생하였을 경우 질서 정연한 탈출 및 퇴선을 지원하기 위하여 작동상태의 유지가 요구되는 시스템 설계 기준, 사고분계점에 대한 정의, 사고 발생 후에도 여객 및 승무원의 건강을 유지 확보하기 위한 안전구역에 대한 기준들을 요구하고 있다. 본 연구에서는, 여객선 안전귀항 관련 법규들을 검토하고, 여객선 안전귀항을 위한 시스템들의 능력 평가 방법과 안전귀항 관련 조항 만족을 위한 시스템들의 요구사항들을 검토하였다.

  • PDF

공간 극단값의 분계점 모형 사례 연구 - 한국 여름철 강수량 (Threshold Modelling of Spatial Extremes - Summer Rainfall of Korea)

  • 황승용;최혜미
    • 응용통계연구
    • /
    • 제27권4호
    • /
    • pp.655-665
    • /
    • 2014
  • 폭염, 폭우와 가뭄 등과 같은 이상 기후 현상에 대한 적절한 대응이 최근 많이 요구되고 있다. 이상 기후 현상을 분석하기 위해 극단값 분석 기법을 적용할 수 있는데, 본 논문은에서는 한국의 여름철 강수량 자료(1973년부터 2012년까지의 5월부터 9월)를 분계점 초과값 모형으로 분석해보았다. 분계점은 한국의 기상관측소들을 5개의 군집으로 나누어, 각 군집별로 지리 정보와 시간을 공변량으로 하는 분위수 회귀 방법을 통하여 추정하였다. Northrop과 Jonathan (2011)과 같이 극단값들이 시공간적으로 독립이라고 가정하고 분석한 후, 추정오차와 검정 과정에 공간 종속성을 반영하였다.

꼬리가 두꺼운 분포의 고분위수에 대한 준모수적 붓스트랩 신뢰구간 (Semi-parametric Bootstrap Confidence Intervals for High-Quantiles of Heavy-Tailed Distributions)

  • 김지현
    • Communications for Statistical Applications and Methods
    • /
    • 제18권6호
    • /
    • pp.717-732
    • /
    • 2011
  • 꼬리가 두꺼운 분포의 고분위수에 대한 신뢰구간을 구할 때 적절한 붓스트랩 방법은 무엇인가에 대해 알아보았다. 비모수적 방법과 모수적 방법, 그리고 준모수적 방법의 성능을 모의실험을 통해 비교하였다.

원/달러 환율 투자 손실률에 대한 극단분위수 추정 (Extreme Quantile Estimation of Losses in KRW/USD Exchange Rate)

  • 윤석훈
    • Communications for Statistical Applications and Methods
    • /
    • 제16권5호
    • /
    • pp.803-812
    • /
    • 2009
  • 금융자료에 극단값이론을 적용하는 것은 위험관리에서 중요한 최신 통계기법 중의 하나라고 할 수 있다. 극단값분석에서 전통적으로 사용해 오던 연간 최대값방법은 시계열자료의 연간 최대값들에 대하여 일반화 극단값분포를 적합시키는 것이고, 최근 대안으로 널리 사용되고 있는 분계점 방법은 시계열자료 중 충분히 큰 하나의 분계점을 넘어서는 초과값들에 대하여 일반화파레토분포를 적합시키는 것이다. 그러나, 보다 실질적인 방법은 분계점을 넘어서는 초과값들을 하나의 점과정으로 해석하는 것인데, 즉 초과값들의 초과시점과 초과여분을 점근적으로 비동질 포아송과정을 갖는 하나의 2차원 점과정으로 간주하는 것이다. 본 논문에서는 이러한 2차원 비동질 포아송과정 모형을 1982.1.4부터 2008.12.31까지 수집된 원/달러 환율 시계열자료로부터 계산된 일별 환율투자손실률, 즉 일별 로그 손실률에 적용한다. 여기서 주된 관심은 10년 혹은 50년에 한번 정도 발생하는 대형 손실률 수준과 같은 극단분위수를 어떻게 추정하느냐 하는 것이다.

꼬리가 두꺼운 분포의 고분위수에 대한 신뢰구간 (Confidence Intervals for High Quantiles of Heavy-Tailed Distributions)

  • 김지현
    • 응용통계연구
    • /
    • 제27권3호
    • /
    • pp.461-473
    • /
    • 2014
  • 꼬리가 두꺼운 분포의 고분위수에 대한 신뢰구간을 연구하였다. 통계량의 극한 분포에 근거한 점근적 방법과 붓스트랩 방법을 같이 고려하였다. 이 두 방법에 모수적, 비모수적, 준모수적 기법을 각각 적용할 수 있는데, 전체 11가지 신뢰구간의 성능을 실제신뢰수준과 길이로 비교하였다. 모의실험 결과 준모수적이면서 점근적인 신뢰구간과 축량을 이용하는 준모수적 붓스트랩 신뢰구간이 실제신뢰수준의 기준에서 안정된 성능을 보인다는 것을 알 수 있었다.