• Title/Summary/Keyword: 북한 SLBM 탑재 신형 잠수함

Search Result 2, Processing Time 0.015 seconds

Hypersonic Weapons and National Security (극초음속 무기체계의 개발 경쟁과 국가 안보의 함의)

  • Son, Hyun-Seung;Lee, Ho-il;Ko, Duk-Gon
    • Journal of Aerospace System Engineering
    • /
    • v.16 no.1
    • /
    • pp.56-69
    • /
    • 2022
  • Various advanced countries are accelerating the competition in the development of hypersonic weapons. North Korea is on the verge of building a new submarine equipped with a submarine-launched ballistic missile (SLBM). A series of new guided missiles tests have continued due to political competition between the U.S. and China. The Republic of Korea is planning to boost its military capabilities, which involves the development of nuclear-powered submarines, light aircraft carriers, and new guided missiles. The northeast Asian region continues to be tense amid military rivalry between the Republic of Korea, North Korea, the United States, China, Russia, and Japan. Accordingly, these countries' competition to develop weapons is also at the world's highest level. In this paper, we examine the functioning of a hypersonic weapons system conduct a technical analysis of its components. In addition, we analyze the direction of military development that the Korean military wants to pursue through the recently announced mid-term defense plan. We conclude by highlighting the technical limitations and implementation strategies to overcome the development of hypersonic weapons.

A study on Convergence Weapon Systems of Self propelled Mobile Mines and Supercavitating Rocket Torpedoes (자항 기뢰와 초공동 어뢰의 융복합 무기체계 연구)

  • Lee, Eunsu;Shin, Jin
    • Maritime Security
    • /
    • v.7 no.1
    • /
    • pp.31-60
    • /
    • 2023
  • This study proposes a new convergence weapon system that combines the covert placement and detection abilities of a self-propelled mobile mine with the rapid tracking and attack abilities of supercavitating rocket torpedoes. This innovative system has been designed to counter North Korea's new underwater weapon, 'Haeil'. The concept behind this convergence weapon system is to maximize the strengths and minimize the weaknesses of each weapon type. Self-propelled mobile mines, typically placed discreetly on the seabed or in the water, are designed to explode when a vessel or submarine passes near them. They are generally used to defend or control specific areas, like traditional sea mines, and can effectively limit enemy movement and guide them in a desired direction. The advantage that self-propelled mines have over traditional sea mines is their ability to move independently, ensuring the survivability of the platform responsible for placing the sea mines. This allows the mines to be discreetly placed even deeper into enemy lines, significantly reducing the time and cost of mine placement while ensuring the safety of the deployed platforms. However, to cause substantial damage to a target, the mine needs to detonate when the target is very close - typically within a few yards. This makes the timing of the explosion crucial. On the other hand, supercavitating rocket torpedoes are capable of traveling at groundbreaking speeds, many times faster than conventional torpedoes. This rapid movement leaves little room for the target to evade, a significant advantage. However, this comes with notable drawbacks - short range, high noise levels, and guidance issues. The high noise levels and short range is a serious disadvantage that can expose the platform that launched the torpedo. This research proposes the use of a convergence weapon system that leverages the strengths of both weapons while compensating for their weaknesses. This strategy can overcome the limitations of traditional underwater kill-chains, offering swift and precise responses. By adapting the weapon acquisition criteria from the Defense force development Service Order, the effectiveness of the proposed system was independently analyzed and proven in terms of underwater defense sustainability, survivability, and cost-efficiency. Furthermore, the utility of this system was demonstrated through simulated scenarios, revealing its potential to play a critical role in future underwater kill-chain scenarios. However, realizing this system presents significant technical challenges and requires further research.

  • PDF