• Title/Summary/Keyword: 부호화 효율

Search Result 1,193, Processing Time 0.02 seconds

A Content-based Video Rate-control Algorithm Interfaced to Human-eye (인간과 결합한 내용기반 동영상 율제어)

  • 황재정;진경식;황치규
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.28 no.3C
    • /
    • pp.307-314
    • /
    • 2003
  • In the general multiple video object coder, more interested objects such as speaker or moving object is consistently coded with higher priority. Since the priority of each object may not be fixed in the whole sequence and be variable on frame basis, it must be adjusted in a frame. In this paper, we analyze the independent rate control algorithm and global algorithm that the QP value is controled by the static parameters, object importance or priority, target PSNR, weighted distortion. The priority among static parameters is analyzed and adjusted into dynamic parameters according to the visual interests or importance obtained by camera interface. Target PSNR and weighted distortion are proportionally derived by using magnitude, motion, and distortion. We apply those parameters for the weighted distortion control and the priority-based control resulting in the efficient bit-rate distribution. As results of this paper, we achieved that fewer bits are allocated for video objects which has less importance and more bits for those which has higher visual importance. The duration of stability in the visual quality is reduced to less than 15 frames of the coded sequence. In the aspect of PSNR, the proposed scheme shows higher quality of more than 2d13 against the conventional schemes. Thus the coding scheme interfaced to human- eye proves an efficient video coder dealing with the multiple number of video objects.

Performance Analysis of Super-Resolution based Video Coding for HEVC (HEVC 기반 초해상화를 이용한 비디오 부호화 효율 성능 분석)

  • Ki, Sehwan;Kim, Dae-Eun;Jun, Ki Nam;Baek, Seung Ho;Choi, Jeung Won;Kim, Dong Hyun;Kim, Munchurl
    • Journal of Broadcast Engineering
    • /
    • v.24 no.2
    • /
    • pp.306-314
    • /
    • 2019
  • Since the resolutions of videos increase rapidly, there are continuing needs for effective video compression methods despite an increase in the transmission bandwidth. In order to satisfy such a demand, a reconstructive video coding (RVC) method by using a super resolution has been proposed. Since RVC reduces the resolution of the input video, when frames are compressed to the same size, the number of bits per pixel increases, thereby reducing coding artifacts caused by video coding. However, RVC method using super resolution is not effective in all target bitrates. Comparing the size of the loss generated while downsizing the resolution and the size of the loss caused by the video compression, only when the size of loss generated in the video compression is larger, RVC method can perform the improved compression performance compared to direct video coding. In particular, since HEVC has considerably higher compression performance than the previous standard video codec, it can be experimentally confirmed that the compression distortions become larger than the distortions of downsizing the resolution only in the very low-bitrate conditions. In this paper, we applied RVC based HEVC in various video types and measured the target bitrates that RVC method can be effectively applied.

Dual Codec Based Joint Bit Rate Control Scheme for Terrestrial Stereoscopic 3DTV Broadcast (지상파 스테레오스코픽 3DTV 방송을 위한 이종 부호화기 기반 합동 비트율 제어 연구)

  • Chang, Yong-Jun;Kim, Mun-Churl
    • Journal of Broadcast Engineering
    • /
    • v.16 no.2
    • /
    • pp.216-225
    • /
    • 2011
  • Following the proliferation of three-dimensional video contents and displays, many terrestrial broadcasting companies have been preparing for stereoscopic 3DTV service. In terrestrial stereoscopic broadcast, it is a difficult task to code and transmit two video sequences while sustaining as high quality as 2DTV broadcast due to the limited bandwidth defined by the existing digital TV standards such as ATSC. Thus, a terrestrial 3DTV broadcasting with a heterogeneous video codec system, where the left image and right images are based on MPEG-2 and H.264/AVC, respectively, is considered in order to achieve both high quality broadcasting service and compatibility for the existing 2DTV viewers. Without significant change in the current terrestrial broadcasting systems, we propose a joint rate control scheme for stereoscopic 3DTV service based on the heterogeneous dual codec systems. The proposed joint rate control scheme applies to the MPEG-2 encoder a quadratic rate-quantization model which is adopted in the H.264/AVC. Then the controller is designed for the sum of the left and right bitstreams to meet the bandwidth requirement of broadcasting standards while the sum of image distortions is minimized by adjusting quantization parameter obtained from the proposed optimization scheme. Besides, we consider a condition on maintaining quality difference between the left and right images around a desired level in the optimization in order to mitigate negative effects on human visual system. Experimental results demonstrate that the proposed bit rate control scheme outperforms the rate control method where each video coding standard uses its own bit rate control algorithm independently in terms of the increase in PSNR by 2.02%, the decrease in the average absolute quality difference by 77.6% and the reduction in the variance of the quality difference by 74.38%.