• Title/Summary/Keyword: 부하 토크

Search Result 363, Processing Time 0.031 seconds

Anti-Slip Control of Railway Vehicle Using Load Torque Disturbance Observer and Speed Sensor-less Vector Control (부하토크외란관측기와 속도센서리스 백터제어를 이용한 철도모의장치의 Anti-Slip 제어)

  • Lee S. C.;Jeon K. Y.;Jho J. M.;Lee S. H.;Kang S. U.;Oh B. H.;Lee H. G.;Han K. H.
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.9 no.6
    • /
    • pp.635-642
    • /
    • 2004
  • In electric motor coaches. the rolling stocks move by the adhesive effort between rail and driving wheel. Generally, the adhesive effort is defined by the function of both the weight of electric motor coach and the adhesive effort between rails and driving wheel. The characteristics of adhesive effort is strongly affected by the conditions between rails and driving wheel. When the adhesive effort decreases suddenly, the electric motor coach has slip phenomena. This paper proposes a re-adhesion control based on disturbance observer and sensor-less vector control. The numerical simulation and experimental results point out that the proposed readhesion control system has the desired driving wheel torque response for the tested bogie system of electric coach. Based on this estimated adhesive effort, the re-adhesion control is performed to obtain the maximum transfer of the tractive effort.

Anti-Slip Control of Railway Vehicle Using Load Torque Disturbance Observer (부하토크외란관측기를 이용한 철도모의장치의 Anti-Slip 제어)

  • Jang, Jin-Hyog;Hwang, Lak-Hun;Kim, Young-Choon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.7 no.6
    • /
    • pp.1064-1071
    • /
    • 2006
  • In electric motor coaches, the rolling stocks move by the adhesive effort between rail and driving wheel. Generally, the adhesive effort is defined by the function of both the weight of electric motor coach and the adhesive effort between rails and driving wheel. The characteristics of adhesive effort is strongly affected by the conditions between rails and driving wheel. When the adhesive effort decreases suddenly, the electric motor coach has slip phenomena. This paper proposes a re-adhesion control based on disturbance observer and sensor-less vector control. The numerical simulation and experimental results point out that the proposed readhesion control system has the desired driving wheel torque response for the tested bogie system of electric coach. Based on this estimated adhesive effort, the re-adhesion control is performed to obtain the maximum transfer of the tractive effort.

  • PDF

Robust Speed control to Load variation of DC motor Drive System by Rapid Design System (고속설계시스템에 의한 직류전동기 구동시스템의 부하변동에 강인한 속도제어)

  • Hwang, Jae-Hyun;Lee, Yong-Seok;Ji, Jun-Keun
    • Proceedings of the KIEE Conference
    • /
    • 2006.07b
    • /
    • pp.1029-1030
    • /
    • 2006
  • 본 논문에서는 리얼게인사의 DSP를 사용하는 고속설계시스템에 의한 부하토크관측기 및 속도 제어기의 설계에 대하여 소개한다. 고속설계시스템은 CEMTool/SIMTool 소프트웨어 프로그램과 RG-DSPIO 제어보드, AUTOTool 프로그램으로 구성되어 있고 이것을 DC Motor 구동시스템에 사용하였다. SIMTool 블록들을 사용함으로써 짧은 시간동안에 다양한 형태의 제어기를 설계 및 구현할 수 있도록 해주는 장점이 있기 때문에 DC Motor의 부하토크관측기 및 속도제어기를 제어 목적에 따라서 쉽게 설계하고 구현할 수 있다.

  • PDF

The Characteristic analysis of 500W Interior Permanent Magnet Synchronous Motor Considering Shape of Magnet (Magnet 형태에 따른 500W급 매입형 영구자석 동기전동기 특성 해석)

  • Kim, Kyung-Su;Lee, Sung-Ho;Cha, Hyun-Rok;Lee, Kyun-Su;Park, ,Sung-Jun
    • Proceedings of the KIEE Conference
    • /
    • 2009.07a
    • /
    • pp.736_737
    • /
    • 2009
  • 본 논문은 전기자전거용으로 쓰이는 500W급 매입형 영구 자석 동기전동기의 자석 형태에 따른 특성 변화에 대해 연구하였다. 전기자전거의 경우 낮은 코깅토크 특성을 필요로 하며, 부하의 변화 시에도 고출력 고효율 특성을 지니는 정특성 운전이 요구된다. 이를 위해 높은 관성력을 얻을 수 있는 외전형 타입의 모터가 필요로 하며, 많은 부하가 요구되는 지점에서 고출력 토크를 위해서는 매입형 영구자석 동기전동기가 요구되고 있다. 본 논문에선 500W급 매입형 영구자석 동기전동기의 특성 향상을 위하여 자석 형태에 따른 모터 특성을 비교 분석하였으며, 실제 최적화 모델을 제작 및 성능실험을 통해 제안된 모델의 타당성을 검증하였다.

  • PDF

The Development of Hydraulic-Coupling Experimental Apparatus Using Brake Load and Prediction of Torque Performance (브레이크 부하를 이용한 유체커플링 실험장치 개발과 토크 성능 예측)

  • 박용호;김기홍
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.17 no.5
    • /
    • pp.100-107
    • /
    • 2000
  • The hydraulic couplings have been widely used in industries, automobile, and power-station drives including ships. A mathematical analysis by which the design and application of hydraulic couplings are made is used in conventional design formulae and general roto-dynamic theories. The fluid flow of hydraulic couplings can be considered to have two component, one circumferentially about the coupling axis, and the other passing fluid from the pump to the turbine in the plane of the coupling axis. Tests have been carried out on the full-scale production coupling. The performance test consists of taking measurement of torque of the fluid coupling for three different amount of working fluid inside with various loads to the output shaft. The purpose of this research is to construct the experimental test equipments and to establish a series of performance test for the domestically developed hydraulic couplings, and to obtain experimental results which can be used to improve the performance of the hydraulic coupling and to solve the practical problems confronted in operation.

  • PDF

Integrated Control of Torque Vectoring and Rear Wheel Steering Using Model Predictive Control (모델 예측 제어 기법을 이용한 토크벡터링과 후륜조향 통합 제어)

  • Hyunsoo, Cha;Jayu, Kim;Kyongsu, Yi
    • Journal of Auto-vehicle Safety Association
    • /
    • v.14 no.4
    • /
    • pp.53-59
    • /
    • 2022
  • This paper describes an integrated control of torque vectoring and rear wheel steering using model predictive control. The control objective is to minimize the yaw rate and body side slip angle errors with chattering alleviation. The proposed model predictive controller is devised using a linear parameter-varying (LPV) vehicle model with real time estimation of the varying model parameters. The proposed controller has been investigated via computer simulations. In the simulation results, the performance of the proposed controller has been compared with uncontrolled cases. The simulation results show that the proposed algorithm can improve the lateral stability and handling performance.

A new sensorless speed control method for permanent magnet synchronous motor using direct torque control (직접토크제어를 이용한 영구자석 동기전동기의 새로운 센서리스 속도제어)

  • Oh, Sae-Gin;Kim, Jong-Su;Kim, Sung-Hwan
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.37 no.6
    • /
    • pp.653-658
    • /
    • 2013
  • This paper describes a new sensorless speed control method for permanent magnet synchronous motor(PMSM) using direct torque control(DTC). The direct torque control offers fast torque response, lesser hardware and processing costs as compared to vector controlled drives. In this paper the current error compensation technique is applied for sensorless speed control of synchronous motor. Through this method, the controlled stator voltage is applied to the synchronous motor so that the error between stator currents of the mathematical model and the actual motor can be forced to decay to zero as time proceeds and therefore, the motor speed approaches to the setting value. Especially, any PI controllers are not necessary in this control method. The simulation results indicate good speed and load responses from the low speed range to the high.

Harmonic Analysis of Power Conversion System for Torque and Speed Changing of Electric Propulsion Ship (전기추진선박의 토크 및 속도변화에 따른 전력변환장치의 고조파 분석)

  • Kim, Jong-Su;Kim, Seong-Hwan
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.17 no.1
    • /
    • pp.83-88
    • /
    • 2011
  • There are various environmental conditions under which ship may navigate over ocean or in harbor. Ship's torque and speed change frequently under the voyage conditions. In this case, harmonics is created in the electrical power systems. The major adverse impacts of voltage and current harmonics in the electrical power systems on generator, transformer, converter, inverter and propulsion motor lead to the increase of machine heating caused by iron and copper losses which are dependent on frequency. In this paper, an analysis of THD(total harmonic distortion) for currents and voltages in the propulsion equipment was carried out. The THD and torque ripple in the input currents of the propulsion motor have been confirmed by the simulation results.

CPVC Valve Tightening Torque Impact Sockets on the Leaks (CPVC 밸브소켓 체결토크가 누수발생에 미치는 영향)

  • Lim, Chun-Ki;Baek, Eun-Sun
    • Fire Science and Engineering
    • /
    • v.30 no.4
    • /
    • pp.46-58
    • /
    • 2016
  • In this study, the stress applied to screw section, strain, displacement, von Mises stress, and the compression stress applied to the rubber packing for watertightness are estimated with computer simulation when the tightening torque of valve socket is in the range of $10{\sim}130N{\cdot}m$ in order to analyze the influence of valve socket screw section in accordance with the excessive tightening which is supposed to be the cause of water leakage from the synthetic resin piping for fire fighting application of sprinkler equipment, and for the sake of verifying this, adequate value of tightening torque and the value of the compression stress of rubber packing are investigated by examining the number of connected thread for each tightening torque, the deformation state of valve socket and rubber packing and conducting the water hammering test. The result of this test is expected to be utilized as the data required for revising the standard or technical criteria to prevent the water leakage of the synthetic resin piping for fire fighting application.

Design of Linear Model Following Controller to Reject Low Frequency Load Disturbance in DC Motor (직류전동기에서 저주파 부하외란에 강인한 선형 모델추종제어기 설계)

  • 윤경섭;이치환;권우현
    • Journal of the Korean Institute of Telematics and Electronics T
    • /
    • v.35T no.1
    • /
    • pp.82-89
    • /
    • 1998
  • PI controller has been used in the servo system. However the time response of the system designed using the PI control scheme does not provide with desirable time response in case of variation in system parameters or perturbation like a torque disturbance. LMFC(Linear model following controller) is being used to make the response of the system follow that of the model even though the parameter variation or the perturbation occurs. In this paper, a design method, RMFC(Robust Model Following Controller) is proposed, which use an auxiliary model in addition to the LMFC, which affords robustness against the low frequency load torque disturbance. The proposed method is more useful to rejecting the low frequency torque disturbance than LMFC. Proposed method is verified by simulation and experiment.

  • PDF