• Title/Summary/Keyword: 부하조건

Search Result 1,160, Processing Time 0.029 seconds

DEM numerical study for the effect of scraper direction on shield TBM excavation in soil (개별요소법을 이용한 스크래퍼 비트방향이 토사지반에서의 쉴드 TBM 굴진에 끼치는 영향 연구)

  • Lee, Gi-Jun;Kim, Huntae;Kwon, Tae-Hyuk;Cho, Gye-Chun;Kang, Shin-Hyun
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.21 no.5
    • /
    • pp.689-698
    • /
    • 2019
  • In tunnel excavation by TBMs, a cutterhead, which practically excavates the ground, is an important part directly affecting net penetration rate. Most of the researches on the cutterhead design that have been carried out until now are on the cutter arrangement. It is difficult to find a study for the effect of the scraper installation direction on TBM excavation although same cutterheads except for direction of the scraper are used in Korea. Therefore, this paper shows how the direction of scraper installation affects shield-TBM excavation. Discrete element method was used to identify the effect of scraper installation direction on shield-TBM excavation. When the scraper installation direction was outward, the amount of particles per unit time flowed into the cutter head opening was smaller than when the scraper installation direction was inward, and more loads were applied to the cutterhead.

Improvement of charging efficiency of AGM lead acid battery through formation pattern research (Formation pattern 연구를 통한 AGM 연축전지의 충전 효율 향상)

  • Kim, Sung Joon;Son, Jeong Hun;Kim, Bong-Gu;Jung, Yeon Gil
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.31 no.1
    • /
    • pp.55-62
    • /
    • 2021
  • In order to improve fuel economy and reduce CO2, HEV adopts ISG system as a standard. This ISG system increased the electric load that the battery had to bear, and the number of starting increased rapidly. AGM Lead Acid batteries have been developed and used, but the charging time is about three times longer as the electrolyte amount control during formation must be maintained at a higher level compared to conventional lead-acid batteries. In this study, we tried to shorten the charging time by increasing the charging efficiency through the optimization of the formation pattern. In order to optimize the Formation Pattern, 10 charging steps and 6 discharging steps were applied to 16 multi steps, and the charging current for each step was controlled, and the test was conducted under 4 conditions (21 hr, 24 hr, 27 hr, 30 hr). As a result of simultaneous application of multi-step and discharge step, it was verified that minimizing the current loss and eliminating the sudden polarization during charging contributes to the improvement of charging efficiency. As a result, it showed excellent results in reducing the charging time by about 30 % with improved charging efficiency compared to the previous one.

Fracture Resistance of Incisal Tooth Fragment reattached with different Materials and Preparation (레진재료와 치아형성 방법에 따른 파절편 재부착치아의 파절저항성)

  • Kim, Jongsung;Kim, Gimin;Lee, Jaesik;Kim, Hyunjung;Nam, Soonhyeun
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.49 no.1
    • /
    • pp.104-112
    • /
    • 2022
  • The purpose of this study is to analyze the fracture resistance of reattached tooth according to the resin materials and tooth preparation type under physiological conditions. Uncomplicated crown fracture in the oblique direction was reproduced on the extracted 64 anterior teeth. Depending on the composite resin material, reattachment was performed using a flowable resin and a packable resin. Depending on retentive forms, reattachment was performed using simple reattachment, 1.0 mm × 1.0 mm labial chamfer bevel, 1.0 mm × 1.0 mm lingual chamfer bevel and 1.0 mm × 1.0 mm circumferential bevel. A load was applied to the palatal surface of the tooth using a universal testing machine at an angle of 125 degree, which is the interincisal angle of normal children. Under the masticatory pressure condition, fracture resistance of lingual chamfer groups was 28.28 ± 7.41 MPa and 27.54 ± 4.45 MPa, which was significantly higher than those of simple reattachment groups, 17.21 ± 5.87 MPa and 20.10 ± 6.00 MPa, in both flowable and packable resin groups. When considering the lingual force similar to masticatory pressure, the fragment retention was significantly improved when the lingual chamfer was formed compared to the simple reattachment. Clinicians may consider the design of the lingual chamfer in order to improve fracture resistance to masticatory pressure during fragment reattachment.

Anaerobic digestion technology for biogas production using organic waste (유기성폐기물의 혐기성 소화에 의한 바이오가스 생산 기술)

  • Kim, Hyoung-Gun;Lee, Dae-Sung;Jang, Hae-Nam;Chung, Tai-Hak
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.18 no.3
    • /
    • pp.50-59
    • /
    • 2010
  • A pilot-scale test for production of biogas was conducted in an specially designed anaerobic digester (KH-ABC) in which the highly concentrated organic waste (food-waste and piggery-manure) was treated. The effect of inhibitive material to the reaction on anaerobic digestion and the feasibility of digested fluid for the liquefied fertilizer were investigated. The production rate of biogas, the concentration of methane($CH_4$) in biogas, and the digesting rate of volatile solid(VS) were analyzed in the variance of the operating conditions ; the influent rate, the mixture ratio of food waste and piggery manure, and the hydraulic retention time(HRT), etc. The production rate of biogas increased from 1.2 to $2.0kg-VS/m^3{\cdot}d$ with the organic loading rate(OLR). The most suitable operating conditions were recorded at $6m^3/day$ of an influent rate, 2:3 of the raw material mixture ratio(food waste : piggery manure) and 25 days of HRT, respectively. Under those conditions, the production rate of biogas, the concentration of methane($CH_4$) in biogas and the digesting rate of volatile solid(VS) were $220m^3/day$, 64%, and 70%, respectively. The concentration of inhibitive materials was below toxic standard and the anaerobic digested fluid(raw material mixture ratio of 3:7) could meet the condition of the liquefied fertilizer.

Study on the Morphology of the PC/ABS Blend by High Shear Rate Processing (PC/ABS 블렌드의 고속전단성형에 따른 모폴로지 변화에 관한 연구)

  • Lee, Dong Uk;Yong, Da Kyoung;Lee, Han Ki;Choi, Seok Jin;Yoo, Jae Jung;Lee, Hyung Il;Kim, Seon-Hong;Lee, Kee Yoon;Lee, Seung Goo
    • Korean Chemical Engineering Research
    • /
    • v.52 no.3
    • /
    • pp.382-387
    • /
    • 2014
  • The PC/ABS blends were manufactured with high shear rate processing. Changes of the blend morphology were analyzed according to the screw speed and processing time. To find optimal conditions of the high shear rate processing of the PC/ABS blend, blend morphology and size of the dispersed phase, ABS, were observed with a SEM. Also, tensile properties of the PC/ABS blends were measured to investigate the effect of the high shear rate process with the screw speed of 500 rpm to 3000 rpm for processing times of 10s to 40s. Especially, to observe the dispersed phase of the PC/ABS blend clearly, fracture surfaces of the PC/ABS blend were etched with chromic acid solution. As screw speed and processing time increase, dispersed phase size of the PC/ABS blend decreases and mechanical properties of the blend decrease as well. Especially, at screw speed over than 1000 rpm of high shear rate processing, mechanical properties of the PC/ABS blends decrease drastically due to the degradation of the blend during the high shear rate processing. Consequently, the optimal condition of screw speed of the high shear processing of the PC/ABS blend is set at 1000rpm, in this study. Under optimal condition, the PC/ABS blend has relatively high mechanical properties with the relatively stable micro-structure having nanometer scale dispersed phase.

Operation Parameters on Biological Advanced Treatment of Phenolic High-Strength Wastewater (페놀계 고농도 유기성 폐수의 생물학적 고도처리 운전인자)

  • Hong, Sung-Dong;Park, Chul-Hwi
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.22 no.4
    • /
    • pp.797-806
    • /
    • 2000
  • The objectives were to compare the biodegradable threshold concentrations of phenol with the different composition of the influent carbon source and examine the SMA (Specific Methanogenic Activity)and the possibility of simultaneous removal of high-strength organics and nitrogen compounds in UASB(Upflow Anaerobic Sludge Blanket) - PBR(Packed Bed Reactor) process. The results showed that UASB reactors were efficient to remove phenol and phenol + glucose from synthetic wastewater. At phenol conc, of 600 mg/L and SCOD conc. of 2100 mg/L in UASB reactor(with only phenol as substrate), the removal efficiencies of phenol and SCOD were over 99% and 93% respectively, under MLVSS of 20 g. The activity of microorganism was $0.112g\;phenol/g\;VSS{\cdot}d$, $0.351g\;SCOD/g\;VSS{\cdot}d$. The gas production rate was $0.115L/g\;VSS{\cdot}d$ and $CH_4$ content in gas was about 70%. At phenol conc. of 760 mg/L and SCOD conc. of 4300 mg/L in UASB reactor( with phenol + glucose as substrates), the removal efficiencies of phenol and of SCOD were over 99% and 90% respectively, under MLVSS of 20 g. The activity of microoganism was $0.135g\;phenol/g\;VSS{\cdot}d$, $0.696g\;SCOD/g\;VSS{\cdot}d$. The gas production rate was $0.257L/g\;VSS{\cdot}d$ and $CH_4$ content in gas was about 70%. Serum bottle test showed that the activity of granule was inhibited over 1600 mg/L phenol conc, and denitrification and methanogenesis simultaneously took place in UASB granules under co-substrates conditions. PBR reactor packed with cilium type media, was efficient in nitrification. In condition of $0.038kg\;NH_4-N/m^3-media{\cdot}d$. 10~12 mg/L phenol conc. and 200~500 mg/L SCOD conc., nitrification efficiency was over 90% and phenol removal efficiency was over 98%.

  • PDF

Deodorization of H2S, CH3SH in Soil Filter Reactors Packed with Montmorillonites, Rice Hulls and Thickening-activated Sludge (Montmorillonites, 왕겨 및 농축활성슬러지를 충진한 토양상에서의 H2S, CH3SH의 제거)

  • Kim, Hwan-Gi;Park, Chan-Soo
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.22 no.1
    • /
    • pp.43-52
    • /
    • 2000
  • Deodorization characteristics and removal rate of sulfur-containing odor have been investigated in the soil filter reactors packed with montmorillonites (Mont.), rice hulls(Rh.), and thickening-activated sludge(Ts.). And variation of pH and $SO_4{^{2-}}$ with the removal of malodorous sulfur compounds have been investigated together. As compared removal rate of montmorillonites between wet and dry condition for sulfur compounds through batch test, it showed that wet condition was better than dry one; removal ratio, as wet/dry, was $H_2S$ of 1.2 and $CH_3SH$ of 1.9, and decrease of pH and increase of $SO_4{^{2-}}$ concentration in the wet condition also showed to be larger than in dry condition. In continuous test for biological deodorization experiment, removal rate of sulfur compounds in reactor packed with Mont., Rh. and Ts, was more than 98 %, and the variation of static pressure was maintained stably under condition of SV $150h^{-1}$, LV 4.2 mm/sec and SV $200h^{-1}$, LV 5.6 mm/sec, and in reactor packed with Mont. and Rh., $H_2S$ was 76.4 % to 87.2 % and $CH_3SH$ was 87.8 % to 93.3 % under the same condition. From above results, it ascertained that it can obtain the high deodorization efficiency by inoculating thickening-activated sludge in soil filter using montmorillonites.

  • PDF

Estimation of Reliability of Real-time Control Parameters for Animal Wastewater Treatment Process and Establishment of an Index for Supplemental Carbon Source Addition (가축분뇨처리공정의 자동제어 인자 신뢰성 평가 및 적정 외부탄소원 공급량 지표 확립)

  • Pak, JaeIn;Ra, Jae In-
    • Journal of Animal Science and Technology
    • /
    • v.50 no.4
    • /
    • pp.561-572
    • /
    • 2008
  • Responses of real-time control parameters, such as ORP, DO and pH, to the conditions of biological animal wastewater treatment process were examined to evaluate the stability of real-time control using each parameter. Also an optimum index for supplemental carbon source addition based on NOx-N level was determined under a consideration of denitrification rate by endogenous respiration of microorganism and residual organic matter in liquor. Experiment was performed with lab-scale sequencing batch reactor(SBR) and working volume of the process was 45L. The distinctive nitrogen break point(NBP) on ORP-and DO-time profiles, which mean the termination of nitrification, started disappearing with the maintenance of low NH4-N loading rate. Also the NBP on ORP-and DO-time profiles was no longer observed when high NOx-N was loaded into the reactor, and the sensitivity of ORP became dull with the increase of NOx-N level. However, the distinctive NBP was constantly occurred on pH(mV)-time profile, maintaining unique profile patterns. This stable occurrence of NBP on pH(mV)-time profile was lasted even at very high NOx-N:NH4-N ratio(over 80:1) in reactor, and the specific point could be easily detected by tracking moving slope change(MSC) of the curve. Revelation of NBP on pH(mV)-time profile and recognition of the realtime control point using MSC were stable at a condition of over 300mg/L NOx-N level in reactor. The occurrence of distinctive NBP was persistent on pH(mV)-time profile even at a level of 10,000mg/L STOC(soluble total organic carbon) and the recognition of NBP was feasible by tracing MSC, but that point on ORP and DO-time profiles began to disappear with the increase of STOC level in reactor. The denitrfication rate by endogenous respiration and residual organic matter was about 0.4mg/L.hr., and it was found that 0.83 would be accepted as an index for supplemental carbon source addition when 0.1 of safety factor was applied.

Anaerobic Organic Wastewater Treatment and Energy Regeneration by Utilizing E-PFR System (E-PER 반응기를 이용한 유기성 폐기물의 혐기성 처리와 재생에너지 생산에 관한 연구)

  • Kim, Burmshik;Choi, Hong-Bok;Lee, Jae-Ki;Park, Joo Hyung;Ji, Duk Gi;Choi, Eun-Ju
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.16 no.2
    • /
    • pp.57-65
    • /
    • 2008
  • Wastewater containing strong organic matter is very difficult to treat by utilizing general sewage treatment plant. but the wastewater is adequate to generate biomass energy (bio-gas; methane gas) by utilizing anaerobic digestion. EcoDays Plug Flow Reactor (E-PFR), which was already proved as an excellent aerobic wastewater treatment reactor, was adapted for anaerobic food wastewater digestion. This research was performed to improve the efficiency of bio-gas production and to optimize anaerobic wastewater treatment system. Food wastewater from N food waste treatment plant was applied for the pilot scale experiments. The results indicated that the efficiency of anaerobic wastewater treatment and the volume of bio-gas were increased by applying E-PFR to anaerobic digestion. The structural characteristics of E-PFR can cause the high efficiency of anaerobic treatment processes. The unique structure of E-PFR is a diaphragm dividing vertical hydraulic multi-stages and the inversely protruded fluid transfer tubes on each diaphragm. The unique structure of E-PFR can make gas hold-up space at the top part of each stage in the reactor. Also, E-PFR can contain relatively high MLSS concentration in lower stage by vertical up-flow of wastewater. This hydraulic flow can cause high buffering capacity against shock load from the wastewater in the reactor, resulting in stable pH (7.0~8.0), relatively higher wastewater treatment efficiency, and larger volume of bio-gas generation. In addition, relatively longer solid retention time (SRT) in the reactor can increase organic matter degradation and bio-gas production efficiency. These characteristics in the reactor can be regarded as "ideal" anaerobic wastewater treatment conditions. Anaerobic wastewater treatment plant design factor can be assessed for having 70 % of methane gas content, and better bio-gas yielding and stable treatment efficiency based on the results of this research. For example, inner circulation with generated bio-gas in the reactor and better mixing conditions by improving fluid transfer tube structure can be used for achieving better bio-gas yielding efficiency. This research results can be used for acquiring better improved regenerated energy system.

  • PDF

Wintertime Extreme Storm Waves in the East Sea: Estimation of Extreme Storm Waves and Wave-Structure Interaction Study in the Fushiki Port, Toyama Bay (동해의 동계 극한 폭풍파랑: 토야마만 후시키항의 극한 폭풍파랑 추산 및 파랑 · 구조물 상호작용 연구)

  • Lee, Han Soo;Komaguchi, Tomoaki;Yamamoto, Atsushi;Hara, Masanori
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.25 no.5
    • /
    • pp.335-347
    • /
    • 2013
  • In February 2008, high storm waves due to a developed atmospheric low pressure system propagating from the west off Hokkaido, Japan, to the south and southwest throughout the East Sea (ES) caused extensive damages along the central coast of Japan and along the east coast of Korea. This study consists of two parts. In the first part, we estimate extreme storm wave characteristics in the Toyama Bay where heavy coastal damages occurred, using a non-hydrostatic meteorological model and a spectral wave model by considering the extreme conditions for two factors for wind wave growth, such as wind intensity and duration. The estimated extreme significant wave height and corresponding wave period were 6.78 m and 18.28 sec, respectively, at the Fushiki Toyama. In the second part, we perform numerical experiments on wave-structure interaction in the Fushiki Port, Toyama Bay, where the long North-Breakwater was heavily damaged by the storm waves in February 2008. The experiments are conducted using a non-linear shallow-water equation model with adaptive mesh refinement (AMR) and wet-dry scheme. The estimated extreme storm waves of 6.78 m and 18.28 sec are used for incident wave profile. The results show that the Fushiki Port would be overtopped and flooded by extreme storm waves if the North-Breakwater does not function properly after being damaged. Also the storm waves would overtop seawalls and sidewalls of the Manyou Pier behind the North-Breakwater. The results also depict that refined meshes by AMR method with wet-dry scheme applied capture the coastline and coastal structure well while keeping the computational load efficiently.