• 제목/요약/키워드: 부피측정

Search Result 1,052, Processing Time 0.036 seconds

Feasibility Study for a Lab-chip Development for LAL Test (LAL 시험용 Lab-chip 개발을 위한 타당성 연구)

  • 황상연;최효진;서창우;안유민;김양선;이은규
    • KSBB Journal
    • /
    • v.18 no.5
    • /
    • pp.429-433
    • /
    • 2003
  • LAL (Limulus amebocyte lysate) test to detect and quantity endotoxin is based on gellation reaction between endotoxin and LAL from a blood extract of Limulus polyphemus. The test is labor intensive requiring dedicated personnel, takes relatively long reaction time (approximately 1 hr), requires relatively large volume of samples and reagents, and its end-point detection method is rather subjective. To solve these problems, we attempted to develop a miniaturized LOC (lab-on-a-chip) prototype using PDMS and glass. Using the 62 mm (length) ${\times}$ 18 mm (width) prototype in which 2 mm (width) ${\times}$ 44.34 mm (length) ${\times}$ 100 $\mu\textrm{m}$ (depth) microfluidic channel was provided, we compared the various detection methods of gellation, turbidometric, and chromogenic assays to find the chromogenic method to be the most suitable for small volume assay. In this assay, kinetic point method was more accurate than end point method. We also found the PDMS chip thickness should be minimized to around 2 mm to allow sufficient light transmittance, which necessitated a glass slide bonding for chip rigidity. Through the miniaturization, the test time was reduced from 1 hr to less than 10 minutes, and the sample volume could be reduced from 100 ${\mu}\ell$ to 4.4 ${\mu}\ell$. In sum, this study revealed that the mini LOC could be an alternative for a semi-automated and reliable method for LAL test.

Acoustic Properties of Ultrasonic Transducer Using Piezocomposites (압전복합재료를 이용한 초음파 트랜스듀서의 음향 특성)

  • Lee, Sang-Wook;Ryu, Jeong-Tag;Nam, Hyo-Duk;Kim, Yeon-Bo
    • The Journal of the Acoustical Society of Korea
    • /
    • v.26 no.2
    • /
    • pp.80-86
    • /
    • 2007
  • We have investigated on the development of 2-2 type piezocomposites that have better piezoelectric activity and lower acoustic impedance than those of conventional piezoceramics. In this study, we have investigated the piezoelectric and acoustic properties of 2-2 type piezocomposites sensor which was fabricated using dice-and-fill technique for the different volume fraction of PZT. The specific acoustic impedance of 2-2 type piezocomposites decreased linearly when PZT volume fraction was decreased. The resonance characteristics measured by an impedance analyzer(HP4194A) were similar to the analysis of finite element method (FEM). The resonance characteristics and the electromechanical coupling factor were the best when the volume fraction PZT was 0.6. It also showed the highest result from the standpoint of sensitivity, bandwidth and ring-down property and so on at the same condition. The specific characteristics show that the 2-2 type piezocomposites turned out to be superior to the ultrasonic sensor composed by single phase PZT.

Changes in Physical Characteristics of Chinese Cabbage during Salting and Blanching (염절임 및 Blanching시 배추의 물리적 특성의 변화)

  • Kim, Ju-Bong;Yoo, Myung-Sik;Cho, Hyung-Yong;Choi, Dong-Won;Pyun, Yu-Ryang
    • Korean Journal of Food Science and Technology
    • /
    • v.22 no.4
    • /
    • pp.445-450
    • /
    • 1990
  • Changes in weight, volume and density of petiole tissue of Chinese cabbage during salting and blanching were investigated. Rapid changes in mass and volume occurred within 4 hours during salting in 5% salt solution and the changes were nearly completed after 8h. After salting, the reduction of mass and volume ranged between $22{\sim}27%\;and\;22{\sim}35%$, respectively. Average density of the sample was found to be 0.88g/ml, and increased to 1.020g/ml after salting. Air content of the sample ranged from 0.093 to 0.120ml/ml cabbage, and about 70% of the initial content was expelled from the tissue by salting. The changes of physical properties of the cabbage during steam blanching were similar to those during salting, but their relative values were smaller. A linearization model for physical changes during salting and blanching was proposed.

  • PDF

Evaluation of the usefulness of prone position for reducing the image distortion due to respiration in PET/CT (PET/CT 검사 시 호흡에 따른 영상 왜곡 감소를 위한 엎드린 자세의 유용성 평가)

  • Lee, Han Wool;Kim, Jung Yul;Choi, Yong Hoon;Lim, Han Sang;Kim, Jae Sam
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.23 no.1
    • /
    • pp.59-63
    • /
    • 2019
  • Purpose The motion due to respiration of patients undergoing PET/CT is a cause of artifacts in image and registration error between PET and CT images. The degree of displacement and distortion for tumor, which affects the measurement of Standard Uptake Value (SUV) and lesion volume, is especially higher for tumors that is small or located at the base of lungs. The purpose of this study was to evaluate the usefulness of prone position in the correction of image distortion due to respiration of patients in PET/CT. Materials and Methods The imaging equipment used in this study was PET/CT Discovery 600 (GE Healthcare, MI, USA). 20 patients whose lesions were identified in the middle and lower lungs from May to August 2018 were enrolled in this study. After acquiring whole body image in the supine position, additional images of the lesion area were obtained in the prone position with the same conditions. SUVmax, SUVmean, and volume of the lesion were measured for each image, and the displacement of the lesion on PET and CT images were measured, compared, and analyzed. Results The SUVmax, SUVmean, and volume, and displacement of the lesion were $4.72{\pm}2.04$, $3.10{\pm}1.38$, $4.68{\pm}3.20$, and $4.64{\pm}1.88$, respectively for image acquired in the supine position and $5.89{\pm}2.42$, $3.97{\pm}1.65$, $2.13{\pm}1.09$, and $2.24{\pm}0.84$, respectively for image acquired in the prone position, indicating that, for all the lesions imaged, SUVmax and SUVmean were higher and volume and displacement were smaller in the images acquired in prone position compared to those acquired in supine one(p<0.05). Conclusion These results showed that the prone position PET/CT imaging improves the quality of the image by increasing the SUV of the lesion and reducing the respiratory artifacts caused by registration error between PET and CT images. It is considered that the PET/CT imaging in the prone position is helpful in the diagnosis of the disease as an economical and efficient methods that correct registration error for the lesions in basal lung and reduce artifacts.

The Patient Specific QA of IMRT and VMAT Through the AAPM Task Group Report 119 (AAPM TG-119 보고서를 통한 세기조절방사선치료(IMRT)와 부피적세기조절회전치료(VMAT)의 치료 전 환자별 정도관리)

  • Kang, Dong-Jin;Jung, Jae-Yong;Kim, Jong-Ha;Park, Seung;Lee, Keun-Sub;Sohn, Seung-Chang;Shin, Young-Joo;Kim, Yon-Lae
    • Journal of radiological science and technology
    • /
    • v.35 no.3
    • /
    • pp.255-263
    • /
    • 2012
  • The aim of this study was to evaluate the patient specific quality assurance (QA) results of intensity modulated radiation therapy (IMRT) and volumetric modulated arc therapy (VMAT) through the AAPM Task Group Report 119. Using the treatment planning system, both IMRT and VMAT treatment plans were established. The absolute dose and relative dose for the target and OAR were measured by using an ion chamber and the bi-planar diode array, respectively. The plan evaluation was used by the Dose volume histogram (DVH) and the dose verification was implemented by compare the measured value with the calculated value. For the evaluation of plan, in case of prostate, both IMRT and VMAT were closed the goal of target and OARs. In case of H&N and Multi-target, IMRT was not reached the goal of target, but VMAT was reached the goal of target and OARs. In case of C-shape(easy), both were reached the goal of target and OARs. In case of C-shape(hard), both were reached the goal of target but not reached the goal of OARs. For the evaluation of absolute dose, in case of IMRT, the mean of relative error (%) between measured and calculated value was $1.24{\pm}2.06%$ and $1.4{\pm}2.9%$ for target and OAR, respectively. The confidence limits were 3.65% and 4.39% for target and OAR, respectively. In case of VMAT the mean of relative error was $2.06{\pm}0.64%$ and $2.21{\pm}0.74%$ for target and OAR, respectively. The confidence limits were 4.09% and 3.04% for target and OAR, respectively. For the evaluation of relative dose, in case of IMRT, the average percentage of passing gamma criteria (3mm/3%) were $98.3{\pm}1.5%$ and the confidence limits were 3.78%. In case of VMAT, the average percentage were $98.2{\pm}1.1%$ and the confidence limits were 3.95%. We performed IMRT and VMAT patient specific QA using TG-119 based procedure, all analyzed results were satisfied with acceptance criteria based on TG-119. So, the IMRT and VMAT of our institution was confirmed the accuracy.