• Title/Summary/Keyword: 부피응력

Search Result 97, Processing Time 0.026 seconds

Effect of Racetrack Pit Depth and Bulk Stress on Far and Near-side Magnetic Flux Leakage at Ferromagnetic Pipeline (강자성 배관 외.내부 벽의 racetrack형 결함깊이와 부피응력이 누설자속에 미치는 영향)

  • Ryu, K.S.;Park, Y.T.;Son, D.;Atherton, D.L.;Clapham, L.
    • Journal of the Korean Magnetics Society
    • /
    • v.13 no.2
    • /
    • pp.70-75
    • /
    • 2003
  • Non-linear anisotropic materials were used to simulate the effects of bulk tensile stress in 3D finite element analysis (FEA). FEA was used to calculate the effects of near and far-side racetrack pit depth and simulated bulk tensile stress on magnetic flux leakage (MFL) signals. The axial and radial MFL signals were depended on near and far-side racetrack pit depth and on the bulk stress, but the circumferential MFL signal was not depended on them. The axial and radial MFL signals increased with greater pit depth and applied bulk stress, but the circumferential MFL signal was scarcely changed.

Effect of Ear and Near-side Single Circular Pit Depth and Bulk Stress on Magnetic Flux Leakage at ferromagnetic Pipeline (강자성 배관 외.내부 면의 단일 원형 홈의 깊이와 부피응력이 누설자속에 미치는 영향)

  • Ryu, Kwon-Sang;Park, Young-Tae;Atherton, D.L.;Clapham, L.
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.23 no.3
    • /
    • pp.263-269
    • /
    • 2003
  • Magnetic flux leakage (MFL) signals were used for corrosion inspection of buried oil and gas pipeline. 3D finite element analysis was used to examine the effects of far and near-side pit depth and tensile stress on MFL signals. Anisotropci materials were used, and the effects of simulated tensile stress on MFL were investigated. The axial and radial MFL signals depended on far and near-side single pit depth and on the bulk stress, but the circumferential MFL signal did not depend on them. The axial and radial MFL signals increased with increasing pit depth and the bulk stress, but the circumferential MFL signal was scarcely changed.

An Electrorheological (ER) Study on the Silica Suspensions (실리카 현탁액의 전기유변학적 연구)

  • 주상현
    • The Korean Journal of Rheology
    • /
    • v.6 no.1
    • /
    • pp.49-59
    • /
    • 1994
  • 높은 전기장 하에서 다분산, 비구형 실리카/실리콘 오일 현탁액의 전기유변 (electrorheological, ER)현상을 살펴 보았다. 전기유변유체는 전기장 방향으로 사슬구조를 형 성하는 특성을 보이며 이것이 유변물성의 향상에 기여하는 것으로 알려졌다. 동적(dynamic) 상태 실험에서 전기장 하의 실리카 현탁액은 매우낮은 임계변형율(${\gamma}$c =0.1%)이상에서 비선 형 점탄성을 보였다. 저장탄성계수(G')는 변형율 변화에 손실탄성계수(G")는 매질의 점도 에 더 민감한 의존성을 보였다. 또한 겉보기 항복응력은 입자의 부피분율과 전기장에$\Phi$1.9E1.4 의 의존성을 보였는데 부피분율에 대한 의존성이 큰 이유는 0.1 이상의 부피분율에서 복합 사슬 구조 내의 입자들 간의 상호 정전효과가 지배적으로 나타나기 때문이라고 생각된다. 정상상태 실험에서는 부피분율이 크거나 높은 전기장 하에서 전단속도가 0.1sec-1 정도 이하 로 감소함에 따라 전단응력이 급겨히 증가하는 현상을 보였다. 그러므로 본질적인 동적 항 복응력을 얻기 위해서는 매우 낮은 전단속도 영역의 특이한 응력거동을 고려해야한다. 큰 전단속도 하에서는 hydrodynamic interaction의 영향으로 전단속도의 증가에 따라 전단응력 이 증가하였다. 이같은 전단응력의 거동을 계단전단실험으로 확인하였다.

  • PDF

Self Diffusion Coefficients and Free Hole Volumes of Poly(acrylonitrile)-poly(vinyl chloride) Copolymers (Poly(acrylonitrile)-poly(vinyl chloride) 공중합체의 자체 확산 계수와 유동 자유 홀부피)

  • Kim, Nam-Jeong
    • Elastomers and Composites
    • /
    • v.46 no.3
    • /
    • pp.245-250
    • /
    • 2011
  • The self diffusions and hole volumes of amorphous region of poly(acrylonitrile)-poly(vinyl chloride) fibers were investigated by experiments of stress relaxation. The experiments of stress relaxation were carried out using the tensile tester with the solvent chamber. The flow parameters of filament fibers were obtained by applying the experimental stress relaxation curves to the theoretical equation of stress relaxation. From the flow parameters, the hole volumes, self diffusions, viscosities and thermodynamic parameters of solid polymers were calculated. It was observed that the flow parameters of these samples are directly related to the hole volumes, self diffusions and flow activation energies of flow segments.

Thermodynamic Properties and Self Diffusions from Rheological Parameters of Eyring-Halsey Model (Eyring-Halsey 모델의 유동파라메타로부터 열역학 성질과 자체 확산)

  • Kim, Nam Jeong
    • Journal of the Korean Chemical Society
    • /
    • v.58 no.3
    • /
    • pp.251-257
    • /
    • 2014
  • The stress relaxation of poly(methyl acrylate)-poly(acrylonitrile) copolymer samples were carried out in air and distilled water at various temperatures using the tensile tester with the solvent chamber. The rheological parameters were obtained by applying the experimental stress relaxation curves to the theoretical equation of the Eyring-Halsey non-Newtonian model. The self diffusion, hole volume, viscosities, and thermodynamic parameters of copolymer samples were calculated from rheological parameters and crystallite size in order to study of flow segments in amorphous region. It was observed that the rheological parameters of these copolymer samples are directly related to the self diffusion, hole volume, viscosities, and thermodynamic parameters of flow segments.

Elastic Wave Characteristics in Cemented Engineered Soils (고결된 Engineered Soils의 탄성파 특성)

  • Lee, Chang-Ho;Yoon, Hyung-Koo;Lee, Woo-Jin;Lee, Jong-Sub
    • Journal of the Korean Geotechnical Society
    • /
    • v.24 no.2
    • /
    • pp.87-97
    • /
    • 2008
  • Behaviors of cemented engineered soils, composed of rigid sand particle and soft rubber particle, are investigated under $K_o$ condition. The uncemented and cemented specimens are prepared with various sand volume fractions to estimate the effect of the cementation in mixtures. The vertical deformation and elastic wave velocities with vertical stress are measured. The bender elements and PZT sensors are used to measure elastic wave velocities. After cementation, the slope of vertical strain shows bilinear and is similar to that of uncemented specimen after decementation. Normalized vertical strains can be divided into capillary force, cementation, and decementation region. The first deflection of the shear wave in near field matches the first arrival of the primary wave. The elastic wave velocities dramatically increase due to cementation hardening under the fixed vertical stress, and are almost identical with additional stress. After decementation, the elastic wave velocities increase with increase in the vertical stress. The effect of cementation hinders the typical rubber-like, sand-like, and transition behaviors observed in uncemented specimens. Different mechanism can be expected in decementation of the rigid-soft particle mixtures due to the sand fraction. a shape change of individual particles in low sand fraction specimens; a fabric change between particles in high sand fraction specimens. This study suggests that behaviors of cemented engineered soils, composed of rigid-soft particles, are distinguished due to the cementation and decementation from those of uncemented specimens.

An Experimental Study on the Bulking Factor of Rock Mass for Subsidence Behavior Analysis (지반침하 거동특성 분석을 위한 암반의 부피팽창률에 관한 연구)

  • Lee, Hee-Joong;Jung, Yong-Bok;Choi, Sung-O.
    • Tunnel and Underground Space
    • /
    • v.18 no.1
    • /
    • pp.33-43
    • /
    • 2008
  • The techniques for measuring the bulking factor of rock mass in subsidence area have never been well known all over the world. The volumetric expansion ratios obtained from blasting operation were the only way of acquiring the bulking factor of rock mass. The bulking factor of rock mass obtained from blasting operation, however, has been seldom classified in a certain criterion. Also the bulking factor of rock mass can be very dependent upon rock types. In order to overcome this limitation obtained from these reasons, the authors studied the experimental bulking factor of rock mass according to the stacking shapes as well as the overburden stresses. Gneiss, limestone and shale were chosen for testing specimens, and each bulking factor has been measured with laboratory test of applying a constant load on the fragmented rock specimens.

Analysis of Composite Response Based on Microstructure Details (복합재료의 미시특성에 따른 기계적 특성해석)

  • 김태우
    • Journal of the Korean Ceramic Society
    • /
    • v.40 no.8
    • /
    • pp.784-790
    • /
    • 2003
  • Present investigation shows the analysis results for ceramic reinforced metal matrix composite under uniaxial transverse tensile loading. The resulting deformation, the projected damage type, and stress-strain behavior were computed depending on microstructure details such as the type of periodic reinforcement array, and the type of interface bonding. A two-dimensional finite element analysis was conducted based on the unit-cell of square, hexagonal, or diagonal periodic away For composite with strong interface bonding, the transverse stress vs. strain curve was generally increased with the increase of the ceramic volume fraction. For the composite with weakly bonded interface, however, the transverse stress vs. strain curve was reduced against the ceramic volume fraction. The decrease was caused by the interface debonding-induced stiffness reduction of the composite. For the composite of weakly bonded interface, the relative reduction rate in the final limit stress for hexagonal array was larger than that for square array. Outcome of the present study was compared favorably with the published literature data.

Self Diffusions and Rheological Properties of Polyamide Polymer Materials in Various Solvents (용매 환경에서의 폴리아미드 고분자 재료의 자체확산과 유변학적인 특성)

  • Kim, Nam Jeong
    • Journal of the Korean Applied Science and Technology
    • /
    • v.36 no.4
    • /
    • pp.1050-1059
    • /
    • 2019
  • The self diffusion, hole volume, and flow thermodynamic parameters of polyamide fibers were calculated from rheological parameters and crystallite size in order to study of flow segments in amorphous region. The stress relaxation of polyamide filament fibers were carried out in air and various solvents at various temperatures using the tensile tester with the solvent chamber. The rheological parameters were obtained by applying the experimental stress relaxation curves to the theoretical equation of the Ree-Eyring and Maxwell non-Newtonian model. It was observed that the rheological parameters of these polyamide filament fibers are directly related to the relaxation spectra, self diffusion, viscosities, and activation energies of flow segments.

Prediction of Residual Stresses in Injection Molded Parts considering packing and cooling Stages (보압과 냉각 과정을 사출성형 제품의 잔류 응력 예측)

  • 윤재륜
    • The Korean Journal of Rheology
    • /
    • v.9 no.1
    • /
    • pp.16-26
    • /
    • 1997
  • 사출 성형된 제품에서 발생하는 잔류응력은 최종 제춤의 기하학적 정밀도와 기계적 성질 및 열적 성질에 영향을 미친다. 사출성형된 제품의 잔류응력을 예측하기 위해서는 먼 저 열 및 유동장의 해석을 수행하여야 하고이를 위해서는 사출 성형의 세단계. 즉 충전, 보 압, 냉각을 모두고려해야한다. 검사체적 방법에 기초한 혼합 유한요소/유한차분방법을 사용 하는 수치 해석적 기법에 의하여 충전과정가 후충전 과정의 유동장 해서을 수행하였다. 일 반화된 헬레쇼 유동을 가정하였고 보압과 냉각과정시의 고본자의 압축성을 고려하였다. 점 도의 전단 변형률의 크기와 온도에 대한 의존성은 개선된 크로스 모델을 사용하여 나타내었 다. Tait에 의해 제안된 상태방정식은 고분자의 온도, 압력, 부피의 상호관계를 묘사하는 좋 은 방법을 제공하였다. 유동해석을 통하여 전 공정에 걸쳐서 온도와 압\ulcorner장의 변화에 대한 데이터를 얻었고 제품의 고체 응력해석의 입력 데이터로 사용하였다. 유한요소응력해석에는 평면 응력요소를 사용하였다. 다양한 형태의 금형에 대해서 공정 변수들을 달리하여 유동장 의 해석과 잔류응력의 계산을 수행하였다. 이로부터 공정조건과 유동장의 관계를 밝히고 최 종 제춤의 잔류 응력에의 영향을 고찰하였다.

  • PDF