• 제목/요약/키워드: 부채꼴 플라즈마

검색결과 3건 처리시간 0.02초

3상 교류 부채꼴 방전을 이용한 메탄으로부터 수소 생산 (Production of Hydrogen from Methane by 3phase AC GlidArc Plasma)

  • 전영남;김성천;임문섭
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2007년도 춘계학술대회B
    • /
    • pp.2232-2237
    • /
    • 2007
  • Steam reforming and catalytic reforming of $CH_4$ conversion to produce synthesis gas require both high temperatures and high pressure. Non-thermal plasma is considered to be a promising technology for the hydrogen rich gas production from methane. In this study, three phase AC GlidArc plasma system was employed to investigate the effects of gas composition, gas flow rate, catalyst reactor temperature and applied electric power on the $CH_4$ and $H_2$ yield and the product distribution. The studied system consisted of three electrode and it connected AC generate power system different voltages. In this study, air was used for the partial oxidation of methane. The results showed that increasing gas flow rate, catalyst reactor temperature, or electric power enhanced $CH_4$ conversion and $H_2$ concentration. The reference conditions were found at a $O_2$/C molar ratio of 0.45, a feed flow rate of 4.9 ${\ell}$/min, and input power of 1kW for the maximum conversions of $CH_4$ with a high selectivity of $H_2$ and a low reactor energy density.

  • PDF

부채꼴방전 플라즈마 개질을 이용한 프로판으로부터의 합성가스 생산 (SynGas Production from Propane using GlidArc Plasma Reforming)

  • 송형운;전영남
    • 대한환경공학회지
    • /
    • 제28권3호
    • /
    • pp.323-328
    • /
    • 2006
  • 본 논문의 목적은 부채꼴방전(GlidArc) 플라즈마 개질을 이용하여 프로판으로부터 카본블랙의 형성이 없는 합성가스 생산을 위한 개질특성과 최적 운전조건을 연구하였다. 또한 수소 생산 및 프로판 전환율을 항상시키기 위해 반응기 내의 촉매반응 영역에 13 wt%의 니켈촉매를 충진하여 수증기 몰 비, 이산화탄소 몰 비, 입력 전력, 주입 유량 변화의 변수별 연구를 수행하였다. 그 결과, 수증기 몰 비, 이산화탄소 몰 비, 입력 전력, 주입 유량이 각각 1.86, 0.48, 1.37 kW, 14 L/min일 때 프로판 전환율이 62.6%로 최적이었다. 위의 조건에서 합성가스의 건가스 기준에 농도는 $H_2\;44.4%,\;CO\;18.2%,\;CH_4\;11.2%,\;C_2H_2\;2.0%,\;C_3H_6\;1.6%,\;C_2H_4\;0.6%,\;C_3H_4$ 0.4%이며, 이산화탄소 전환율은 29.2%, 합성가스 내의 $H_2/CO$ 농도 비는 2.4이다.

3상 교류 부채꼴 방전을 이용한 메탄으로부터 수소 생산 (Production of Hydrogen from Methane Using a 3 Phase AC Glidarc Discharge)

  • 김성천;전영남
    • 한국수소및신에너지학회논문집
    • /
    • 제18권2호
    • /
    • pp.132-139
    • /
    • 2007
  • Popular techniques for producing synthesis gas by converting methane include steam reforming and catalyst reforming. However, these are high temperature and high pressure processes limited by equipment, cost and difficulty of operation. Low temperature plasma is projected to be a technique that can be used to produce high concentration hydrogen from methane. It is suitable for miniaturization and for application in other technologies. In this research, the effect of changing each of the following variables was studied using an AC Glidarc system that was conceived by the research team: the gas components ratio, the gas flow rate, the catalyst reactor temperature and voltage. Glidarc plasma reformer was consisted of 3 electrodes and an AC power source. And air was added for the partial oxidation reaction of methane. The result showed that as the gas flow rate, the catalyst reactor temperature and the electric power increased, the methane conversion rate and the hydrogen concentration also increased. With $O_2/C$ ratio of 0.45, input flow rate of 4.9 l/min and power supply of 1 kW as the reference condition, the methane conversion rate, the high hydrogen selectivity and the reformer energy density were 69.2%, 36.2% and 35.2% respectively.