• Title/Summary/Keyword: 부착응력 분포

Search Result 66, Processing Time 0.026 seconds

Analytical Model for Transfer Bond Performance of Prestressing Strands (PS 강선의 정착부착성능에 관한 해석 모델)

  • 유승룡
    • Magazine of the Korea Concrete Institute
    • /
    • v.6 no.4
    • /
    • pp.92-101
    • /
    • 1994
  • A new analytical model is proposed to better understand the transfer bond performance in a prestressed pretensioned concrete beam. The transfer length is divided into an elastic and a plas tic zones in this model. The bond stress is assumed t.o increase proportionally with the slip t.o the lirnit of maximum bond stress within the elastic zone and remains at a constant maximum value wthin the plastic zone. Four main stress patterns: bond stress, slip, steel stress, and concrete stress distributions within the transfer length are obtained precisely. The total transfer length al\ulcornerd free-end slip obtained here give a close comparison to the test results by Cousins et al.

Bond Stress in Concrete Pilled Steel Tubular Column (CFT 기둥의 부착응력에 관한 연구)

  • 권승희;김진근
    • Journal of the Korea Concrete Institute
    • /
    • v.13 no.2
    • /
    • pp.93-98
    • /
    • 2001
  • CFT column has excellent structural properties due to the composite action between concrete and steel tube. The bond behavior between the constituent elements has to be found for analyzing the behavior of CFT column. A new model is necessary because most of existing models for bond stress-slip relationship of the deformed bar cannot be applied to the CFT column. Therefore, the objective of this research is to develop a new model related to the bond behavior of CFT column considering the relation between bond stress and vertical stress, and the distribution of lateral stress under the confinement created by steel casing. From equilibrium condition, the formula for relationship between bond stress and vertical stress is derived, and the relationship for the lateral stresses of the CFT column section is obtained by an Airy stress function. The experiments are performed for five CFT column specimens axially loading on concrete alone. The relation between bond strength and lateral stress is investigated from the regression analysis using the measured strains. Finally a new bond strength model is proposed, which is able to predict the relationship for the stress of each direction of CFT column loading on concrete.

Behavior of Overlaid Concrete Pavements under Multi-Axle Vehicle Loads Obtained Using Transformed Field Domain Analysis (변환영역 해석법을 이용한 덧씌우기 된 콘크리트 도로 포장의 다축차륜하중에 대한 거동 분석)

  • An, Zu-Og;Kim, Seong-Min
    • International Journal of Highway Engineering
    • /
    • v.9 no.2 s.32
    • /
    • pp.63-76
    • /
    • 2007
  • The transformed field domain analysis method was developed in this study to investigate the aspects of the stress distribution in overlaid concrete pavement systems under multi-axle vehicle loads. The overlay was assumed to be perfectly bonded or perfectly unbonded to the existing concrete pavement. The loads considered included the dual tired single-axle, tandem-axle, and tridem-axle loads, and the effects of the overlay's thickness, elastic modulus, and Poisson's ratio on the stress distribution were investigated. Details of the analysis method in the transformed field domain to analyze the overlaid pavement was described in this paper and the analysis results were verified by comparing with those obtained using the finite element method. From the analysis, it was found that the maximum tensile stress in the existing slab decreased as the overlay's thickness, elastic modulus, and Poisson's ratio increased, and the bonded overlay showed more significant effects than the unbonded one. The overlay's Poisson's ratio did not much affect the stresses, and the features of the maximum stress reduction in the existing slab due to the increase of the thickness, elastic modulus, and Poisson's ratio of the overlay were investigated. The effects of the number of axles on the stress distribution and the maximum stress were also investigated.

  • PDF

An Analytical Study on Strain Distribution Using Strain Gauge Attached On Root Surface (치근 부착 스트레인 게이지를 이용한 응력 분포 분석)

  • Kim, Sang-Cheol;Park, Kyu-Chan
    • The korean journal of orthodontics
    • /
    • v.31 no.3 s.86
    • /
    • pp.325-333
    • /
    • 2001
  • Optimal orthodontic treatment could be possible when a orthodontist can predict and control tooth movement by applying a planned force system to the dentition. The moment to force(M/F) ratio at the bracket, has been shown to be a primary determinate of the pattern of tooth movement. As various n/F ratios are applied to the bracket on the tooth crown, strain distribution in periodontium can be changed, and the center of rotation in tooth movement can be determined. It is, therefore, so important in clinicalorthodontics to know the strain distribution in a force system of a M/F ratio. The purpose of this study was to analyze the strain distribution in orthodontic force system by strain gauge attached to tooth root, and to evaluate the usage of the method. For this study, an experimental upper anterior arch model was constructed, where upper central incisors, on the root surface of which, 8 strain gauges were attached, were implanted In the photoelastic resin, as in the case of 4mm midline diastema. Three types of closing of upper midline diastema closure were compared : 1. with elastomeric chain(100g force) in no arch wire, 2. elastomeric chain in .016“ round steel wire, 3. elastomeric chain in .016”x.022“ rectangular steel wire. The results were as follows. 1. Strain distributions on labial, lingual, mesial and distal root surface of tooth were able to be evaluated with the strain gauge method, and the patterns of tooth rotation were understood by presuming the location of moment arm. 2. Extrusion and tipping movement of tooth was seen in closing in no arch wire, and intrusion and bodily movement was seen with steel arch wire inserted.

  • PDF

An Experimental Study for Bond Characteristics of Deformed Bar Embedded in Donut Type Biaxial Hollow Slab (도넛형 이방향 중공슬래브의 부착특성에 관한 실험적 연구)

  • Chung, Joo-Hong;Kang, Sung-Hoon;Lee, Seung-Chang;Choi, Chang-Sik;Choi, Hyun-Ki
    • Journal of the Korea Concrete Institute
    • /
    • v.25 no.2
    • /
    • pp.155-163
    • /
    • 2013
  • This study investigated the bond characteristics of embedded deformed steel bar in donut type biaxial hollow slabs. The donut type hollow sphere make concrete inner cover formed between steel bar and hollow sphere due to the hollow shape and arrangement. Generally, inner cover was thinner than outer cover, and some part of donut type biaxial hollow slab has smaller inner cover thickness than $2.5d_b$. It was affected to the bond condition of deformed bar. Furthermore, inner cover thickness changes along the longitudinal deformed bar due to hollow shape. Therefore, donut type hollow slab was divided 3 regions according to the hollow shape such as insufficient region, transition region, sufficient region. Pull-out test were performed to find out the effect of bond condition by the region. Main parameters are inner cover thickness, embedded length and bond location. Bond characteristics of donut type biaxial hollow slab were confirmed through comparison of bond stress-slip relationship, maximum bond strength and bond stress distribution of each regions. And the calculation method of bond strength of donut type biaxial hollow slab was suggested based on the test results.

Evaluation of Crack Width Based on the Actual Bond Stress-Slip Relationship in Structural Concrete Members (부착응력-미끌림 관계에 기반한 철근콘크리트 부재의 균열폭 산정)

  • Kim, Woo;Lee, Ki-Yeol;Kim, Jang-Hyun
    • Journal of the Korea Concrete Institute
    • /
    • v.18 no.1 s.91
    • /
    • pp.91-100
    • /
    • 2006
  • This paper presents an analytical model for evaluation of crack widths in structural concrete members. The model is mathematically derived from the actual bond stress-slip relationships between the reinforcement and the surrounding concrete, and the relationships summarized in CEB-FIP Model Code 1990 are employed in this study together with the assumption of a linear slip distribution along the interface at the stabilized cracking stage. With these, the actual strains of the steel and the concrete are integrated respectively along the embedment length between the adjacent cracks so as to obtain the difference in the axial elongation. The model is applied to the test specimens available in literatures, and the predicted values are shown to be in good agreement with the experimentally measured data.

Experimental Study for Interrelation of Influential Parameters on Unbonded Tendon Stress Variation (비부착 긴장재의 응력변화에 영향을 미치는 변수들의 상호관계에 대한 실험적 고찰)

  • 문정호;이선화;이창규;임재형
    • Journal of the Korea Concrete Institute
    • /
    • v.13 no.1
    • /
    • pp.62-68
    • /
    • 2001
  • The purpose of this paper was to investigate the relations between the unbonded tendon stress and the influential parameters which were bonded reinforcement ratio, span/depth ratio, and loading type. To this end, first, the influence of parameters were examined with twenty eight test results obtained from references. Then, an experimental study was carried out with 21 test specimens. The investigation with previous and current tests revealed the followings; (1) The bonded reinforcement ratio and prestressing ratio were proved to be an important variables on the unbonded tendon stress. (2) The ratio of span to depth and type of loading affected partially the unbonded tendon stress although their effects varied depending on bonded reinforcement ratio. (3) AASHTO LRFD Code and Moon/Lim\`s design equation predicted the test results well with some safety margins.

An Improved Bond Slip Model of CFT Columns for Nonlinear Finite Element Analysis (CFT 기둥의 비선형 유한요소해석을 위한 개선된 강관-콘크리트 간 부착 모델 개발)

  • Kwon, Yangsu;Kwak, Hyo-Gyoung;Hwang, Ju-Young;Kim, Jin-Kook;Kim, Jong-Min
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.28 no.2
    • /
    • pp.213-220
    • /
    • 2015
  • CFT column has a lot of structural advantages due to the composite behavior between in-filled concrete and steel tube. This paper deals with the development of an effective numerical model which can consider the bond-slip behavior between both components of concrete matrix and steel tube without taking double nodes. Since the applied axial load to in-filled concrete matrix is delivered to steel tube by the confinement effect and the friction, the governing equation related to the slip behavior can be constructed on the basis of the force equilibrium and the compatability conditions. In advance, the force and displacement relations between adjacent two nodes make it possible to express the slip behavior with the concrete nodes only. This model results in significant savings in the numerical modeling of CFT columns to take into account the effect of bond-slip. Finally, correlation studies between numerical results and experimental data are conducted to verifying the efficiency of the introduced numerical model.

Effect of Bond Action of Longitudinal Bars on Shear Transfer Mechanism in RC Beams (RC 보에서의 전단저항기구와 주철근의 부착 작용과의 관계)

  • Kim Kil-Hee
    • Journal of the Korea Concrete Institute
    • /
    • v.17 no.4 s.88
    • /
    • pp.513-520
    • /
    • 2005
  • The uniform truss mechanism is widely accepted as a shear transfer mechanism in reinforced concrete members. However, the uniform truss action cannot be expected when the bond stress distribution is not constant along longitudinal bars. A test method in which only the truss action takes place is developed and conducted to investigate the truss actions under various bond contributions. Based on the experimental results and analysis, the following findings can be obtained: 1) The bond stress distribution depends on the axial compression force, the amount of shear reinforcement and loading conditions. 2) The analysis using the combined truss model consisting of uniform and fan-shape trusses can predict the experimental results

Modeling of Tension Stiffening Effect Based on Nonlinear Bond Characteristics in Structural Concrete Members (비선형 부착 특성에 기반한 철근콘크리트 부재의 인장증강효과 모델)

  • Lee, Gi-Yeol;Ha, Tae-Gwan;Kim, Woo
    • Journal of the Korea Concrete Institute
    • /
    • v.19 no.6
    • /
    • pp.745-754
    • /
    • 2007
  • This paper presents a unified modeling technique for tension stiffening effect in structural concrete members. The model is mathematically derived from the bond stress-slip relationships which account for splitting crack. The relationships in CEB-FIP Model Code 1990 and Eurocode 2 are employed together with the assumptions of a linear slip distribution along the interface and the uniform condition of concrete tensile contribution for the mid section of cracked member at the stabilized cracking stage. With these assumptions, a model of tension stiffening effect is proposed by accounting for the force equilibrium and strain compatibility condition associated to the steel strain and concrete contribution by bond stress. The model is applied to the test results available in literatures, and the predicted values are shown to be in good agreement with the experimentally measured behavior.