• Title/Summary/Keyword: 부지환경평가

Search Result 258, Processing Time 0.028 seconds

Soil Investigation Strategies for Soil Risk Assessment (토양위해성평가를 위한 합리적 토양조사방안 연구)

  • Jeong, Seung-Woo;An, Youn-Joo
    • Journal of Soil and Groundwater Environment
    • /
    • v.12 no.1
    • /
    • pp.36-43
    • /
    • 2007
  • The objectives of soil investigation in risk assessment of contaminated sites are to characterize the level and area of contamination, and provide the important physical and chemical properties of contaminated sites for later exposure assessment. This study suggests two soil investigation strategies to be considered in the soil risk assessment in Korea. First, soil investigation for characterizing soil properties is additionally required to the current investigation method that has focused on chemical analysis. Second, application of statistical concepts to soil investigation plan and soil data analysis are required for confidential decison-making on contamination and determining the exposure soil concentration. This study provides a practical soil investigation strategy to involve the current Korean soil analysis guidance with the minimum sample number required for satisfying statistical limits.

Preliminary Estimation of Waste Landfill Sites Using Geo-Spatial Information System and Analytic Hierarchy Process (GSIS와 AHP법을 이용한 쓰레기 매립지 예비 평가 방법)

  • 양인태;김연준;최광식
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.16 no.1
    • /
    • pp.59-66
    • /
    • 1998
  • According to grow interest in environmental quality with improvements of a standard of living site selection problems of environmental hatred facilities, such as waste landfill sites caused regional conflicts. This study investigates a waste landfill estimation method that was used to storage, management, analysis and display of environmental information provided by goo-spatial information system(GSIS) analytic hierarchy process(AHP) as a decision-making method. If GSIS is integrated with AHP, site selection problems of environmental hatred facilities shall be able to very useful, because of AHP with flexibility which appropriately reflect opinions of the related group.

  • PDF

Environmental Evaluation for a Photovoltaic-Fuel Cell Hybrid Power System (태양전지-연료전지 복합 전력시스템에 대한 환경평가에 관한 연구)

  • 노경수
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.12 no.3
    • /
    • pp.83-88
    • /
    • 1998
  • This paper presents an overview of environmental evaluation for a photovoltaic-fuel cell hybrid power plant through the Ideal Point approach, which is one of multiobjective decision support systems. Its evaluation is carried out in terms of such tow criteria as land requirement for plant construction and lifetime CO2 emissions, and ten compared with conventional fossil fuel power plants. Fuel cell power system has been proven a viable technology to back up severe PV power fluctuations under inclement weather conditions. Fuel cell power generation, containing small land use, is able to alleviate the heavy burden of large surface requirement of PV power plants. In addition, the PV-fuel cell hybrid power system shows a very little potential for lifetime CO2 emissions.

  • PDF

Evaluation of the Influence of Shear Strength Correction through a Comparative Study of Nonlinear Site Response Models (비선형 지반구성모델의 비교를 통한 전단강도 보정이 부지응답해석에 미치는 영향 평가)

  • Aaqib, Muhammad;Park, Duhee;Kim, Hansup;Adeel, Muhammad Bilal;Nizamani, Zubair Ahmed
    • Journal of the Korean Geotechnical Society
    • /
    • v.36 no.12
    • /
    • pp.77-86
    • /
    • 2020
  • In this study, the importance of implied strength correction for shallow depths at a region of moderate to low seismicity with primary focus on its effect upon site natural period and mean period of the ground motion is investigated. In addition to the most commonly used Modified Kondner-Zelasko (MKZ) model, this paper uses a quadratic/hyperbolic (GQ/H) model that can capture the stress - strain response at large strains as well as small strain stiffness dependence. A total of six site profiles by downhole tests are used and 1D site response analyses are performed using three input motions with contrasting mean periods. The difference between non-corrected and corrected analyses is conditional on the site period as well as mean ground motion period. The effect of periods is analyzed by correlating them with the effective peak ground acceleration, maximum shear strains and amplification factors. The comparative study reveals that the difference is more prominent in soft sites with long site periods. Insignificant differences are observed when soil profiles are subjected to ground motion with very short mean period.

Reliability Assessment of Ambient Noise HVSR per Observation Condition (관측 환경에 따른 상시미동의 HVSR 결과 신뢰도 평가)

  • Yoo, Byeongho;Choi, Woojeong;Choi, Inhyeok;Kwak, Dongyoup
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.42 no.1
    • /
    • pp.23-33
    • /
    • 2022
  • The horizontal-to-vertical spectral ratio (HVSR) of ambient noise is widely used to identify the resonant frequency of a site. The frequency at the largest HVSR is regarded as the resonant frequency. The source of ambient noise is impossible to identify and control. Therefore, obtaining reliable HVSR of ambient noise requires sufficient measurement time and absence of near-field vibration. In this study, we investigated the minimum stabilization time required for a portable seismometer and the effect of the distance between the seismometer and artificial vibration on HVSR estimation. In the case of a soil site, the HVSR was stabilized after 5 minutes after sensor installation. In the case of a rock site, stabilization required more than an hour. Human-footsteps within 10 m of the seismometer strongly influenced the HVSR for the soil site. These results provide a field guideline when measuring ambient noise for HVSR.

Radiation Dose Assessment of ACP Hotcell for Spent Fuel Treatment in Normal Operation & Accident Case (사용후핵연료 처리를 위한 ACP 핫셀의 정상운영 및 사고시 방사선 환경영향평가)

  • 국동학;정원명;구정회;조일제;이은표;유길성
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.2 no.3
    • /
    • pp.155-164
    • /
    • 2004
  • Advanced spent fuel Conditioning Process(ACP) project which is under development for efficient spent fuel management has finished process feasibility study and is preparing $\alpha$-${\gamma}$ type hot cell construction for process experimentation. Radiation dose evaluation for the radioactive nuclides were preliminarily performed for normal operation and accident case with the basic concept design report, the meteorological data and the recent site specific data. According to the production and release rate of nuclides, dose evaluations for residents around facility were performed. The evaluation result shows a safe margin for regulation limits and SAR(Safety Analysis Report) limit of IMEF(Irradiated Material Examination Facility) where this facility will be constructed.

  • PDF

Derivation of External Flood Hazard Curves for SOC Facilities under Climate Change (기후변화에 따른 SOC시설물의 외부침수 재해도 곡선 산정)

  • Kim, Beom Jin;Kim, Hyun Il;Han, Kun Yeun;Heo, Jun Haeng;Shin, Ju Young
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2018.05a
    • /
    • pp.16-16
    • /
    • 2018
  • 최근 국가시설물에서는 집중호우 등으로 인한 대상 부지 내의 홍수 발생 시 주요시설물에 기능 마비가 발생할 수 있고, 궁극적으로는 대규모 사고로 이어질 수 있기 때문에 외부침수에 대비할 수 있는 위험도 분석이 필요하다. 대상 부지에서의 외부침수의 원인으로서는 LIP(Local Intensive Precipitation)에 의한 홍수 발생조건, 인근에 댐, 제방 등이 위치한 경우 이들 시설물의 붕괴에 따른 홍수류의 원전 유입, 지진해일/폭풍해일에 의한 바다로부터의 홍수 유입 등이 대표적인 예이다. 따라서 대상 부지 및 그 SOC시설물의 안전도를 높은 수준에서 관리하기 위해서는 극한홍수가 유입될 때 침수심, 침수유속, 침수시간, 침수강도 등의 재해도를 분석하여야하고, 이들 SOC시설물의 취약도 평가를 실시하고 재해도와 취약도를 결합한 연계분석을 통하여 위험도를 재평가하여야 한다. 본 연구에서는 기후변화 시나리오에 대해서 LIP(극한강우) 조건을 빈도별 분석하였고, 기후변화에 의한 가능최대강우량(PMP)의 재포락을 실시하고, 이를 확률강우조건과 비교 검토하였다. 대상부지에서의 RCP4.5와 RCP8.5 조건하에서 발생빈도-지속시간-극한강우량과의 상관도를 제시하였다. 지형분석의 고도화 및 수문분석을 통한 LIP를 이용한 극한 홍수량의 산정을 실시하였고, 수리분석에 의한 극한홍수조건의 침수해석을 실시하였다. 침수해석을 통한 수리변량(침수심, 침수강도, 침수지속시간 등)을 산정하였고, 침수해석결과에 주요지점별 발생빈도-지속시간-침수위의 관계를 재해도로 제시하였다. 본 연구 결과 집중호우 조건하에서 국가 주요시설물에서의 침수심, 침수강도 등에 대한 새로운 재해도 곡선을 산정함으로써 중요한 SOC시설물의 내수 설계, 홍수 방지기능 설계, 홍수 방지 대책 및 절차의 고도화 및 홍수 저감 기능 평가에 기준이 될 것으로 판단된다.

  • PDF

방사성폐기물 가상 처분장에 대한 성능평가

  • 김창락;최희주;조찬희;이명찬
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1995.05b
    • /
    • pp.775-780
    • /
    • 1995
  • 방사성폐기물 처분장 폐쇄후 처분시설의 성능평가를 수행하기 위해 해안에 위치한 임의의 지역을 가정하여 평가하여 보았다. 성능평가를 위해 영국 AEA Technology가 개발한 확률론적 종합 성능평가 코드인 MASCOT을 이용하였다. 임해지역에 위치한 가상 처분장에 대해 MASCOT을 이용하여 계산하여 본 결과 생태계에서 개인이 받게되는 예상 최대 위험확률은 폐쇄후 4,000년에 9.45$\times$$10^{-7}$yr$^{-1}$로서 이는 성능목표치를 만족할 수 있음을 알 수 있었다. 가상 처분장에 대해 성능평가를 수행함으로써 향후 방사성폐기물 처분부지가 결정되었을 경우, 결정된 처분부지의 특성에 따른 성능평가 및 환경영향평가를 원활히 수행할 수 있을 것이다.

  • PDF

Site Monitoring System of Earthquake, Fault and Slope for Nuclear Power Plant Sites (원자력발전소의 부지감시시스템의 운영과 활용)

  • Park, Donghee;Cho, Sung-il;Lee, Yong Hee;Choi, Weon Hack;Lee, Dong Hun;Kim, Hak-sung
    • Economic and Environmental Geology
    • /
    • v.51 no.2
    • /
    • pp.185-201
    • /
    • 2018
  • Nuclear power plants(NPP) are constructed and operated to ensure safety against natural disasters and man-made disasters in all processes including site selection, site survey, design, construction, and operation. This paper will introduce a series of efforts conducted in Korea Hydro and Nuclear Power Co. Ltd., to assure the safety of nuclear power plant against earthquakes and other natural hazards. In particular, the present status of the earthquake, fault, and slope safety monitoring system for nuclear power plants is introduced. A earthquake observatory network for the NPP sites has been built up for nuclear safety and providing adequate seismic design standards for NPP sites by monitoring seismicity in and around NPPs since 1999. The Eupcheon Fault Monitoring System, composed of a strainmeter, seismometer, creepmeter, Global Positioning System, and groundwater meter, was installed to assess the safety of the Wolsung Nuclear Power Plant against earthquakes by monitoring the short- and long-term behavioral characteristics of the Eupcheon fault. Through the analysis of measured data, it was verified that the Eupcheon fault is a relatively stable fault that is not affected by earthquakes occurring around the southeastern part of the Korean peninsula. In addition, it was confirmed that the fault monitoring system could be very useful for seismic safety analysis and earthquake prediction study on the fault. K-SLOPE System for systematic slope monitoring was successfully developed for monitoring of the slope at nuclear power plants. Several kinds of monitoring devices including an inclinometer, tiltmeter, tension-wire, and precipitation gauge were installed on the NPP slope. A macro deformation analysis using terrestrial LiDAR (Light Detection And Ranging) was performed for overall slope deformation evaluation.