• Title/Summary/Keyword: 부지환경평가

Search Result 258, Processing Time 0.038 seconds

Case Study of Dynamic Amplification Characteristics of the Seismic Stations Using Observed Seismic Waves (관측지진파를 이용한 지반증폭특성 사례분석)

  • Lee, Jundae;Kim, Junkyoung
    • Journal of the Korean GEO-environmental Society
    • /
    • v.10 no.1
    • /
    • pp.35-41
    • /
    • 2009
  • It is necessary to consider the site amplification for estimating SSI (soil structure interaction) and seismic source with more confidence. The horizontal to vertical (H/V) ratio technique in spectral domain is one of several techniques to estimate empirical site transfer function. The technique, originally proposed by Nakamura (1989), is applied to analyze the surface waves in the microtremor records. However, the application of this technique has been widened to the shear wave energy of strong motions for estimating site amplification. The purpose of this paper is to estimate spectral ratio using observed data at the seismic stations distributed within Southern Korean Peninsula from the Fukuoka earthquake including 11 aftershocks. The results show that each station has the its own characteristics of the specific resonance, high-band, and low-band frequency. The characteristics of the resonance frequency is more important because the quality of the seismic records are dependent on the resonance frequency. The result can be used for the study of site classification and removal of the site amplification effects from observed records can give us more reliable seismic source parameters.

  • PDF

YOLOv5-based Chimney Detection Using High Resolution Remote Sensing Images (고해상도 원격탐사 영상을 이용한 YOLOv5기반 굴뚝 탐지)

  • Yoon, Young-Woong;Jung, Hyung-Sup;Lee, Won-Jin
    • Korean Journal of Remote Sensing
    • /
    • v.38 no.6_2
    • /
    • pp.1677-1689
    • /
    • 2022
  • Air pollution is social issue that has long-term and short-term harmful effect on the health of animals, plants, and environments. Chimneys are the primary source of air pollutants that pollute the atmosphere, so their location and type must be detected and monitored. Power plants and industrial complexes where chimneys emit air pollutants, are much less accessible and have a large site, making direct monitoring cost-inefficient and time-inefficient. As a result, research on detecting chimneys using remote sensing data has recently been conducted. In this study, YOLOv5-based chimney detection model was generated using BUAA-FFPP60 open dataset create for power plants in Hebei Province, Tianjin, and Beijing, China. To improve the detection model's performance, data split and data augmentation techniques were used, and a training strategy was developed for optimal model generation. The model's performance was confirmed using various indicators such as precision and recall, and the model's performance was finally evaluated by comparing it to existing studies using the same dataset.

Development and Application of Penetration Type Field Shear Wave Apparatus (관입형 현장 전단파 측정장치의 개발 및 적용)

  • Lee, Jong-Sub;Lee, Chang-Ho;Yoon, Hyung-Koo;Lee, Woo-Jin;Kim, Hyung-Sub
    • Journal of the Korean Geotechnical Society
    • /
    • v.22 no.12
    • /
    • pp.67-76
    • /
    • 2006
  • The reasonable assessment of the shear stiffness of a dredged soft ground and soft clay is difficult due to the soil disturbance. This study addresses the development and application of a new in-situ shear wave measuring apparatus (field velocity probe: FVP), which overcomes several of the limitations of conventional methods. Design concerns of this new apparatus include the disturbance of soils, cross-talking between transducers, electromagnetic coupling between cables, self acoustic insulation, the constant travel distance of S-wave, the rotation of the transducer, directly transmitted wave through a frame from transducer to transducer, and protection of the transducer and the cable. These concerns are effectively eliminated by continuous improvements through performing field and laboratory tests. The shear wave velocity of the FVP is simply calculated, without any inversion process, by using the travel distance and the first arrival time. The developed FVP Is tested in soil up to 30m in depth. The experimental results show that the FVP can produce every detailed shear wave velocity profiles in sand and clay layers. In addition, the shear wave velocity at the tested site correlates well with the cone tip resistance. This study suggests that the FVP may be an effective technique for measuring the shear wave velocity in the field to assess dynamic soil properties in soft ground.

Preliminary Evaluation of Domestic Applicability of Deep Borehole Disposal System (심부시추공 처분시스템의 국내적용 가능성 예비 평가)

  • Lee, Jongyoul;Lee, Minsoo;Choi, Heuijoo;Kim, Kyungsu;Cho, Dongkeun
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.16 no.4
    • /
    • pp.491-505
    • /
    • 2018
  • As an alternative to deep geological disposal technology, which is considered as a reference concept, the domestic applicability of deep borehole disposal technology for high level radioactive waste, including spent fuel, has been preliminarily evaluated. Usually, the environment of deep borehole disposal, at a depth of 3 to 5 km, has more stable geological and geo-hydrological conditions. For this purpose, the characteristics of rock distribution in the domestic area were analyzed and drilling and investigation technologies for deep boreholes with large diameter were evaluated. Based on the results of these analyses, design criteria and requirements for the deep borehole disposal system were reviewed, and preliminary reference concept for a deep borehole disposal system, including disposal container and sealing system meeting the criteria and requirements, was developed. Subsequently, various performance assessments, including thermal stability analysis of the system and simulation of the disposal process, were performed in a 3D graphic disposal environment. With these analysis results, the preliminary evaluation of the domestic applicability of the deep borehole disposal system was performed from various points of view. In summary, due to disposal depth and simplicity, the deep borehole disposal system should bring many safety and economic benefits. However, to reduce uncertainty and to obtain the assent of the regulatory authority, an in-situ demonstration of this technology should be carried out. The current results can be used as input to establish a national high-level radioactive waste management policy. In addition, they may be provided as basic information necessary for stakeholders interested in deep borehole disposal technology.

A Study on the Applicability of Soilremediation Technology for Contaminated Sediment in Agro-livestock Reservoir (농축산저수지 오염퇴적토의 토양정화기술에 대한 적용성 연구)

  • Jung, Jaeyun;Chang, Yoonyoung
    • Journal of Environmental Impact Assessment
    • /
    • v.29 no.3
    • /
    • pp.157-181
    • /
    • 2020
  • Sediments from rivers, lakes and marine ports serve as end points for pollutants discharged into the water, and at the same time serve as sources of pollutants that are continuously released into the water. Until now, the contaminated sediments have been landfilled or dumped at sea. Landfilling, however, was expensive and dumping at sea was completely banned due to the London Convention. Therefore, this study applied contaminated sedimentation soil of 'Royal Palace Livestock Complex' as soil purification method. Soil remediation methods were applied to pretreatment, composting, soil washing, electrokinetics, and thermal desorption by selecting overseas application cases and domestically applicable application technologies. As a result of surveying the site for pollutant characteristics, Disolved Oxigen (DO), Suspended Solid (SS), Chemical Oxygen Demand (COD), Total Nitrogen (TN), and Total Phosphorus (TP) exceeded the discharged water quality standard, and especially SS, COD, TN, and TP exceeded the standard several tens to several hundred times. Soil showed high concentrations of copper and zinc, which promote the growth of pig feed, and cadmium exceeded 1 standard of Soil Environment Conservation Act. In the pretreatment technology, hydrocyclone was used for particle size separation, and the fine soil was separated by more than 80%. Composting was performed on organic and Total Petroleum Hydrocarbon (TPH) contaminated soils. TPH was treated within the standard of concern, and E. coli was analyzed to be high in organic matter, and the fertilizer specification was satisfied by applying the optimum composting conditions at 70℃, but the organic matter content was lower than the fertilizer specification. As a result of continuous washing test, Cd has 5 levels of residual material in fine soil. Cu and Zn were mostly composed of ion exchange properties (stage 1), carbonates (stage 2), and iron / manganese oxides (stage 3), which facilitate easy separation of contamination. As a result of applying acid dissolution and multi-stage washing step by step, hydrochloric acid, 1.0M, 1: 3, 200rpm, 60min was analyzed as the optimal washing factor. Most of the contaminated sediments were found to satisfy the Soil Environmental Conservation Act's standards. Therefore, as a result of the applicability test of this study, soil with high heavy metal contamination was used as aggregate by applying soil cleaning after pre-treatment. It was possible to verify that it was efficient to use organic and oil-contaminated soil as compost Maturity after exterminating contaminants and E. coli by applying composting.

Characteristics and Assessment of Water Quality by Vinyl House Cultivation in Pal-dang Lake Basin (비닐하우스 경작에 따른 팔당호 유역의 수질특성 및 오염도 평가)

  • Ahn, Tae-Woong;Choi, I-Song;Oh, Jong-Min
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2009.05a
    • /
    • pp.2009-2013
    • /
    • 2009
  • 일반적으로 비닐하우스내의 농작물 경작은 자연환경과 차단된 조건에서 작물을 집약적으로 재배하므로 비료의 사용량이 많아 오염원으로 작용하고, 휴작기에 비닐을 제거 방치하므로 비닐 표면에 집적된 오염물은 강우 시 유출되어 이들로 인한 주변 하천수 및 지하수 오염을 가중시킨다. 따라서 팔당호 유역내 하천 부지에서 비닐하우스 등이 집단화 되어 있어 이로 인해 팔당호 유역내 수질에 영향을 미칠 것으로 판단된다. 또한 팔당호 유역내 하천부지에서 대단위 비닐농가가 집단적으로 조성되어 있는 것으로 조사되었으며, 팔당호 유역내 산발적으로 비닐하우스 농가가 형성되어 있는 것으로 조사되었다. 이들 비닐하우스로부터 비강우시에는 유출 오염수는 없는 것으로 파악되었으나, 강우 시 강우유출수가 표면 유출되는 과정에서 오염수가 팔당호로 직접 유입되어 팔당호 수질에 영향을 미치는 것으로 파악되었다. 팔당호 유역의 비닐하우스 경작에 의한 수질특성 조사 결과, SS 농도는 북한강 $372{\sim}446$ $mg/{\ell}$, 남한강 $488{\sim}547$ $mg/{\ell}$, 경안천 $345{\sim}415$ $mg/{\ell}$로 조사되었으며, BOD 농도는 북한강 $12.2{\sim}15.3$ $mg/{\ell}$, 남한강 $13.3{\sim}16.8$ $mg/{\ell}$, 경안천 $15.6{\sim}18.8$ $mg/{\ell}$으로 조사되었고, COD 농도는 북한강 $23.9{\sim}26.8$ $mg/{\ell}$, 남한강 $25.2{\sim}26.0$ $mg/{\ell}$, 경안천 $26.4{\sim}32.9$ $mg/{\ell}$로 조사되었다. 또한 T-N 농도는 북한강 $17.39{\sim}23.64$ $mg/{\ell}$, 남한강 $17.87{\sim}22.09$ $mg/{\ell}$, 경안천 $18.34{\sim}19.55$ $mg/{\ell}$으로 조사되었으며, T-P 농도는 북한강 $1.425{\sim}1.795$ $mg/{\ell}$, 남한강 $1.519{\sim}1.767$ $mg/{\ell}$, 경안천 $1.727{\sim}1.827$ $mg/{\ell}$로 조사되었다. 또한, 오염부하량으로부터 산정된 비닐하우스의 하천에 미치는 오염부하기여율은 SS의 경우 17.3%, BOD 4.5%, COD 5.2%, T-N 11.0%, T-P 7.4%로 조사되었다. 이는 비닐하우스 농가에서 유출되는 SS 및 T-N, T-P 오염부하량이 하천에 미치는 영향이 상대적으로 높다는 것을 의미하며, 이는 비닐하우스 주변이 주로 나대지로 되어 있고 비료 또는 영양물질이 많기 때문인 것으로 판단된다. 그러나 탄소성 유기물질을 나타내는 BOD 및 COD의 오염부하기여율은 주변 토양과 큰 차이를 보이지 않았다. 결국 비닐하우스의 재배는 토양 표면피복의 효과적인 관리 및 영양물질에 대한 관리가 이루어지지 않을 경우 팔당호에 영향을 미칠 수 있을 것으로 판단된다.

  • PDF

Synthetic Study on the Geological and Hydrogeological Model around KURT (KURT 주변 지역의 지질모델-수리지질모델 통합 연구)

  • Park, Kyung-Woo;Kim, Kyung-Su;Koh, Yong-Kwon;Choi, Jong-Won
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.9 no.1
    • /
    • pp.13-21
    • /
    • 2011
  • To characterize the site specific properties of a study area for high-level radioactive waste disposal research in KAERI, the several geological investigations such as surface geological surveys and borehole drillings were carried out since 1997. Especially, KURT (KAERI Underground Research Tunnel) was constructed to understand the further study of geological environments in 2006. As a result, the first geological model of a study area was constructed by using the results of geological investigation. The objective of this research is to construct a hydrogeological model around KURT area on the basis of the geological model. Hydrogeological data which were obtained from in-situ hydraulic tests in the 9 boreholes were estimated to accomplish the objective. And, the hydrogeological properties of the 4 geological elements in the geological model, which were the subsurface weathering zone, the log angle fracture zone, the fracture zones and the bedrock were suggested. The hydrogeological model suggested in this study will be used as input parameters to carry out the groundwater flow modeling as a next step of the site characterization around KURT area.

Study on Characteristics for Local Deposit of Sediment by Surveying River Bed's Layer History in High Berm of River Channel (하도 층구조 이력조사를 통한 하도내 국지퇴적 특성 분석)

  • Ryu, Young-Hoon;Lee, Sam-Hee;Ahn, Won-Sik
    • Journal of Korea Water Resources Association
    • /
    • v.43 no.10
    • /
    • pp.883-891
    • /
    • 2010
  • More recently, there have been significant changes in the forms of channels due to runoff characteristics driven by climate changes and other alterations in basin/channel environments. Particularly, increasing local deposition in major channels is being observed nationwide. Of such phenomena, it is noteworthy that flood-plains show unidirectional growth and lowering of channels within compound channels in the form of a high-flow plain. These changes are supposed to affect management of the river ecology as well as flood control. In this study, the research on channels in Korea confirmed that the phenomenon of local deposition in those channels is actually taking place, rendering a problem to be urgently addressed. Previous studies on bed changes have been focused on low channels based on bed materials distributed over the channels. However, this research has proved that surface-layer deposition of a high-flow plain is closely related with changes in the conditions of ground surfaces and, ultimately, affects the bed of the entire channel as well. According to the intensive research on the condition of the high-flow plain of the mouth of the Han River, the silt deposited in the high-flow plain was the main cause of settlement/growth of vegetation. And this leads to landforming along with woods-forming, disturbing flood control as well as the normal river ecology.

Geoscientific Research of Bedrock for HLW Geological Disposal using Deep Borehole (고준위방사성폐기물 심층처분을 위한 심부 시추공을 활용한 암반의 지구과학적 조사 )

  • Dae-Sung, Cheon;Won-Kyong, Song;You Hong, Kihm;Seungbeom, Choi;Seong Kon, Lee;Sung Pil, Hyun;Heejun, Suk
    • Tunnel and Underground Space
    • /
    • v.32 no.6
    • /
    • pp.435-450
    • /
    • 2022
  • In step-by-step site selection for geological disposal of high-level radioactive waste, parameters necessary for site selection will be acquired through deep drilling surveys from the basic survey stage. Unlike site investigations of rock mass structures such as tunnels and underground oil storage facilities, those related to the geological disposal of high-level radioactive waste are not only conducted in relatively deep depths, but also require a high level of quality control. In this report, based on the 750 m depth drilling experience conducted to acquire the parameters necessary for deep geological disposal, the methodology for deep drilling and the geology, geophysics, geochemistry, hydrogeology and rock mechanics obtained before, during, and after deep drilling are discussed. The procedures for multidisciplinary geoscientific investigations were briefly described. Regarding in-situ stress, one of the key evaluation parameter in the field of rock engineering, foreign and domestic cases related to the geological disposal of high-level radioactive waste were presented, and variations with depth were presented, and matters to be considered or agonized in acquiring evaluation parameters were mentioned.

A Comparative Study of Microtremor HVSR from the Surface and Downhole Seismometers (지표형과 지중형 지진계의 상시미동 자료를 이용한 HVSR 비교 연구)

  • Su Young Kang;Kwang-Hee Kim
    • Journal of the Korean earth science society
    • /
    • v.44 no.6
    • /
    • pp.594-610
    • /
    • 2023
  • The horizontal-to-vertical spectral ratio (HVSR) has been widely applied to evaluate ground characteristics such as site response and thickness of the soft sedimentary layer on top of the bedrock via dominant frequencies and amplification factors of microtremors. Eight seismic stations were selected to investigate the HVSR results at the surface and at varying depths, and their variations due to wind speeds. These stations are equipped with seismic sensors on the surface and downhole(s) at depths. The borehole data analysis reveals that the geological condition at burial depth influences the HVSR results. Their dominant frequencies indicate the entire thickness of the soft layer, not the thickness to the bottom or top of the soft sedimentary layer from the seismometer burial depth. Analysis of the background noise observed at the surface showed that the resonance frequency estimation varied with wind speed changes. In the studied cases, the background noise observed in the sedimentary layer at depths of 20 to 66 meters yielded stable and consistent resonance frequency estimation regardless of wind speed fluctuations. The results of the seismic sensors buried deeper than 100 meters are unstable. The result indicates that the background noise from the buried seismometer at shallow depths (~0.3 m) under light wind conditions (wind speeds less than 3 m/s) is sufficient to achieve the purpose of the HVSR analysis.