• Title/Summary/Keyword: 부지증폭

Search Result 61, Processing Time 0.022 seconds

Analysis of Site Amplification of Seismic Stations using Odesan Earthquake (오대산지진 자료를 이용한 국내 지진관측소 부지의 지반증폭특성 연구)

  • Kim, Jun-Kyoung
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.13 no.1
    • /
    • pp.27-34
    • /
    • 2009
  • Site amplification should be considered in order to estimate Soil-Structure Interaction (SSI), seismic source and attenuation parameters with a greater degree of reliability. The horizontal to vertical (H/V) ratio technique, originally proposed by Nakamura (1989), has been applied to analyze the surface waves in microtremor records. Recently, its application has been extended to the shear wave energy of strong motion in order to study the site transfer function. The purpose of this paper is to estimate the H/V spectral ratio using the observed data from 9 seismic stations distributed within the Southern Korean Peninsula, from the Odesan earthquake (2007/01/20). The results show that most of the stations have more stable amplification characteristics in a low frequency band than in a high frequency band. However, each seismic station showed its own characteristic resonant frequency and low and high frequency. The resonant frequency at each station should be estimated carefully, because the quality of seismic data is dependent on the resonant frequency. It can be obtained more reliable results of seismic source and attenuation parameters, if seismic ground motions which deconvolved from site transfer function is used. The site amplification data from this study can be used to generally classify the sites within the Southern Korean Peninsula.

Verification of 2-Parameters Site Classification System and Site Coefficients (I) - Comparisons with Well-known Seismic Code and Site Response Characteristics (2-매개변수 지반분류 방법 및 지반 증폭계수의 검증 (I) - 국외 내진설계기준 및 부지응답특성과의 비교)

  • Lee, Sei-Hyun;Sun, Chang-Guk;Ha, Jeong-Gon;Kim, Dong-Soo
    • Journal of the Korean Geotechnical Society
    • /
    • v.28 no.3
    • /
    • pp.25-34
    • /
    • 2012
  • In order to verify that the recently proposed two-parameters site classification system and the corresponding site coefficients are suitable for the local geological conditions in Korea, a comparison was conducted with current Korean seismic code, Eurocode-8, NYC DOT seismic code. The design spectrum of the current Korean seismic code is significantly amplified in the long-period range, whereas the other response spectra, including the proposed two-parameters approach, are significantly amplified in the short-period range, which is a typical geological condition in Korea. In addition, based on the results of site response analyses in the specific $10km{\times}10km$ area of Gyeongju, spatial distributions of site coefficients from site-specific seismic response analyses were compared with the proposed site coefficients, as well as those specified in the current Korean seismic code. The site coefficients ($F_a$ and $F_v$) from the current Korean seismic codes show significantly high spatial error distributions compared with those specified by the two-parameters site classification system. Therefore, the proposed system is suitable for regions of shallow bedrock including the Korean peninsula.

Site Classification for Incheon According to Site-Specific Seismic Response Parameters by Estimating Geotechnical Spatial Information Based on GIS (GIS 기반 지반공간정보 추정을 통한 부지고유 지진응답 매개변수 기반 인천 지역의 부지분류)

  • SUN, Chang-Guk;KIM, Han-Saem
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.19 no.4
    • /
    • pp.17-35
    • /
    • 2016
  • Earthquake-induced disasters are often more severe in locations with soft soils than firm soils or rocks due to differences in ground motion amplification. On a regional scale, such differences can be estimated by spatially predicting subsurface soil thickness over the entire target area. In general, soil deposits are generally deeper in coastal or riverside areas than in inland regions. In this study, a coastal metropolitan area, Incheon, was selected to assess site effects and provide information on seismic hazards. Spatial prediction of geotechnical layers was performed for the entire study area within the GIS framework. Approximately 7,000 existing borehole drilling data in the Incheon area were gathered and archived into the GIS Database (DB). In addition, surface geotechnical data were acquired from a walkover survey. Based on the built geotechnical DB, spatial zoning maps of site-specific seismic response parameters were created and presented for use in a regional seismic strategy. Site response parameters were performed to determine site coefficients for seismic design over the entire target area and compared with each other. Site classifications and subsequent seismic zoning were assigned based on site coefficients. From this seismic zonation case study in Incheon, we verified that geotechnical GIS-DB can create spatial zoning maps of site-specific seismic response parameters that are useful for seismic hazard mitigation particularly in coastal metropolitan areas.

GIS-based Spatial Zonations for Regional Estimation of Site-specific Seismic Response in Seoul Metropolis (대도시 서울에서의 부지고유 지진 응답의 지역적 예측을 위한 GIS 기반의 공간 구역화)

  • Sun, Chang-Guk;Chun, Sung-Ho;Chung, Choong-Ki
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.30 no.1C
    • /
    • pp.65-76
    • /
    • 2010
  • Recent earthquake events revealed that severe seismic damages were concentrated mostly at sites composed of soil sediments rather than firm rock. This indicates that the site effects inducing the amplification of earthquake ground motion are associated mainly with the spatial distribution and dynamic properties of the soils overlying bedrock. In this study, an integrated GIS-based information system for geotechnical data was constructed to establish a regional counterplan against ground motions at a representative metropolitan area, Seoul, in Korea. To implement the GIS-based geotechnical information system for the Seoul area, existing geotechnical investigation data were collected in and around the study area and additionally a walkover site survey was carried out to acquire surface geo-knowledge data. For practical application of the geotechnical information system used to estimate the site effects at the area of interest, seismic zoning maps of geotechnical earthquake engineering parameters, such as the depth to bedrock and the site period, were created and presented as regional synthetic strategy for earthquake-induced hazards prediction. In addition, seismic zonation of site classification was also performed to determine the site amplification coefficients for seismic design at any site and administrative sub-unit in the Seoul area. Based on the case study on seismic zonations for Seoul, it was verified that the GIS-based geotechnical information system was very useful for the regional prediction of seismic hazards and also the decision support for seismic hazard mitigation particularly at the metropolitan area.

Earthquake Engineering Bedrock Based on the Shear Wave Velocities of Rock Strata in Korea (국내 암반지층의 전단파속도에 근거한 지진공학적 기반암 결정)

  • Sun, Chang-Guk
    • The Journal of Engineering Geology
    • /
    • v.24 no.2
    • /
    • pp.273-281
    • /
    • 2014
  • In most current seismic design codes, design earthquake ground motions are defined by a reference spectrum, based on bedrock and site amplification factors that quantify the geotechnical dynamic conditions. Earthquake engineering bedrock is the fundamental geotechnical formation where the seismic waves are attenuated without amplification. To better define bedrock in an earthquake engineering context, shear wave velocity ($V_S$ ) data obtained from in-situ seismic tests were examined for several rock strata in Korea; these data were categorized by borehole drilling investigations. The $V_S$ values for most soft rock data in Korea are > 750 m/s, which is the threshold $V_S$ value for identifying engineering bedrock from a strong motion station. Conversely, VS values are < 750 m/s for 60% of $V_S$ data in weathered rock in Korea. Thus, the soft (or harder) rock strata below the weathered rock layer in Korea can be regarded as earthquake engineering bedrock.

Seismic Zonation on Site Responses in Daejeon by Building Geotechnical Information System Based on Spatial GIS Framework (공간 GIS 기반의 지반 정보 시스템 구축을 통한 대전 지역의 부지 응답에 따른 지진재해 구역화)

  • Sun, Chang-Guk
    • Journal of the Korean Geotechnical Society
    • /
    • v.25 no.1
    • /
    • pp.5-19
    • /
    • 2009
  • Most of earthquake-induced geotechnical hazards have been caused by the site effects relating to the amplification of ground motion, which is strongly influenced by the local geologic conditions such as soil thickness or bedrock depth and soil stiffness. In this study, an integrated GIS-based information system for geotechnical data, called geotechnical information system (GTIS), was constructed to establish a regional counterplan against earthquake-induced hazards at an urban area of Daejeon, which is represented as a hub of research and development in Korea. To build the GTIS for the area concerned, pre-existing geotechnical data collections were performed across the extended area including the study area and site visits were additionally carried out to acquire surface geo-knowledge data. For practical application of the GTIS used to estimate the site effects at the area concerned, seismic zoning map of the site period was created and presented as regional synthetic strategy for earthquake-induced hazards prediction. In addition, seismic zonation for site classification according to the spatial distribution of the site period was also performed to determine the site amplification coefficients for seismic design and seismic performance evaluation at any site in the study area. Based on this case study on seismic zonations in Daejeon, it was verified that the GIS-based GTIS was very useful for the regional prediction of seismic hazards and also the decision support for seismic hazard mitigation.

Analysis of H/V Ratio using Recent Earthquake (국내관측소의 부지 증폭특성 연구)

  • Yoo, Seong-Hwa;Oh, Tae-Seok;Kim, Jun-Kyoung
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2006.06a
    • /
    • pp.175-180
    • /
    • 2006
  • The horizontal to vertical ratio technique in spectral domain is a common useful technique to estimate empircal site transfer function. The technique, originally proposed by Nakamura, is porposed to analyse the surface waves in the micortremor records. The purpose of this paper is to estimate spectral ratio using observed data at the seismic stations in Korean Peninsula from the Fukuoka earthquake including many aftershocks. The results show that most of the stations have fairly good amplification factors. However, some of the stations show that very high amplification factors at narrow high frequency band. Those stations which have very high amplification factors seem to do some kind of mechanical consideration for quality observation.

  • PDF

Uniform Hazard Spectrum Evaluation Method for Nuclear Power Plants on Soil Sites based on the Hazard Spectra of Bedrock Sites (암반 지반의 재해도 스펙트럼에 기반한 토사지반 원전 부지의 등재해도 스펙트럼 평가 기법)

  • Hahm, Dae-Gi;Seo, Jeong-Moon;Choi, In-Kil;Rhee, Hyun-Me
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.16 no.3
    • /
    • pp.35-42
    • /
    • 2012
  • We propose a probabilistic method to evaluate the uniform hazard spectra (UHS) of the soil of nuclear power plant(NPP) sites corresponding to that of a bedrock site. To do this, amplification factors on the surface of soil sites were estimated through site response analysis while considering the uncertainty in the earthquake ground motion and soil deposit characteristics. The amplification factors were calculated by regression analysis with spectral acceleration because these two factors are mostly correlated. The proposed method was applied to the evaluation of UHS for the KNGR (Korean Next Generation Reactor) and the APR1400 (Advanced Power Reactor 1400) nuclear power plant sites of B1, B4, C1 and C3. The most dominant frequency range with respect to the annual frequency of earthquakes was evaluated from the UHS analysis. It can be expected that the proposed method will improve the results of integrated risk assessments of NPPs rationally. We expect also that the proposed method will be applied to the evaluation of the UHS and of many other kinds of soil sites.

Assessment of Seismic Site Response at Hongseong in Korea Based on Two-dimensional Basin Modeling using Spatial Geotechnical Information (공간 지반 정보를 활용한 이차원 분지 모델링 기반의 국내 홍성 지역에서의 부지 지진 응답 평가)

  • Sun, Chang-Guk
    • The Journal of Engineering Geology
    • /
    • v.19 no.1
    • /
    • pp.15-23
    • /
    • 2009
  • The site effects relating to the amplification of ground motion under earthquake loading are strongly influenced by both the subsurface soil condition and geologic structure. In this study, the site effects at the Hongseong area in Korea were examined by both the site investigation including borehole drilling and in-situ seismic tests and the site visit for acquiring geologic information of ground surface. Subsurface of Hongseong area with a major instrumental earthquake event in 1978 is composed of weathered layers of a maximum of 45 m thickness overlying bedrock. A geotechnical information system based on GIS framework was implemented to effectively find out spatial geologic structure of study area and it indicated Hongseong is a shallow and wide shaped basin. Two-dimensional finite element (FE) analyses for a representative cross-section of the Hongseong area were performed to evaluate seismic site responses. From the results of seismic responses, it was observed that the ground motions were amplified during the propagation of shear waves through the soil layer overlying the bedrock and the duration of shaking near the basin edges was prolonged due to the surface waves generated by interactions of shear waves with basin geometry. Furthermore, one-dimensional FE seismic response analyses were additionally conducted for soil sites selected in the basin, and it gives similar results to the two-dimensional seismic responses at most locations in the basin with the exception of the locations near the basin edges, because the basin in this study is very shallow and wide.

The Analysis of SH-Wavw Response in the Homogeneous Half-Space Having Alluvial Deposit of Arbitrary Shape (임의 형상의 퇴적층을 갖는 균일 반무한 영역내에서 SH파 응답 해석)

  • 권영록;손영호
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.5 no.1
    • /
    • pp.7-12
    • /
    • 2001
  • 본 노문은 임의형상의 퇴적층을 갖는 반부한 영역내에서 SH하가 경사지게 입사할 때의 지진응답을 연구하였다. 그리고 비균질 퇴적층인 반무한 영역에서 파의 증폭을 다루었다. 사용한 수치해석 방법으로는 유한요소법과 경계요소법을 결합하여 수치해석하였다. 반무한 영역에서 자유장 응답과 정해를 비교 분석한 결과 잘 일치하여 검증되었다. 불규칙한 형상의 비균질 퇴적층을 갖는 부지에서의 지진응답 해석은 본 연구에서 개발한 수치해석 방법으로 가능하다. 따라서 임의 층상구조를 갖는 연약층에서의 SH파 증폭과 임의 각도와 입사하는 SH파에 대한 지진응답을 해석하였다.

  • PDF